Результаты поиска по 'network density':
Найдено статей: 6
  1. Alekseenko A.E., Kholodov Y.A., Kholodov A.S., Goreva A.I., Vasilev M.O., Chekhovich Y.V., Mishin V.D., Starozhilets V.M.
    Development, calibration and verification of mathematical model for multilane urban road traffic flow. Part I
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1185-1203

    In this paper, we propose the unified procedure for the development and calibration of mathematical model for multilane urban road traffic flow. We use macroscopic approach, describing traffic flow with the system of second-order nonlinear hyperbolic equations (for traffic density and velocity). We close the resulting model with the equation of vehicle flow as a function of density, obtained empirically for each segment of road network using data from traffic detectors and vehicles’ GPS tracks. We verify the developed new model and calibration methods by using it to model segment of Moscows Ring Road.

    Views (last year): 4. Citations: 2 (RSCI).
  2. Zatserkovnyy A.V., Nurminski E.A.
    Neural network analysis of transportation flows of urban aglomeration using the data from public video cameras
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 305-318

    Correct modeling of complex dynamics of urban transportation flows requires the collection of large volumes of empirical data to specify types of the modes and their identification. At the same time, setting a large number of observation posts is expensive and technically not always feasible. All this results in insufficient factographic support for the traffic control systems as well as for urban planners with the obvious consequences for the quality of their decisions. As one of the means to provide large-scale data collection at least for the qualitative situation analysis, the wide-area video cameras are used in different situation centers. There they are analyzed by human operators who are responsible for observation and control. Some video cameras provided their videos for common access, which makes them a valuable resource for transportation studies. However, there are significant problems with getting qualitative data from such cameras, which relate to the theory and practice of image processing. This study is devoted to the practical application of certain mainstream neuro-networking technologies for the estimation of essential characteristics of actual transportation flows. The problems arising in processing these data are analyzed, and their solutions are suggested. The convolution neural networks are used for tracking, and the methods for obtaining basic parameters of transportation flows from these observations are studied. The simplified neural networks are used for the preparation of training sets for the deep learning neural network YOLOv4 which is later used for the estimation of speed and density of automobile flows.

  3. Makarova I.V., Shubenkova K.A., Mavrin V.G., Boyko A.D.
    Specifics of public transport routing in cities of different types
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 381-394

    This article presents a classification of cities, taking into account their spatial planning and possible transport solutions for cities of various types. It also discusses examples of various strategies for the development of urban public transport in Russia and the European Union with a comparison of their efficiency. The article gives examples of the impact of urban planning on mobility of citizens. To implement complex strategic decisions, it is necessary to use micro and macro models which allow a comparison of situations “as is” and “as to be” to predict consequences. In addition, the authors propose a methodology to improve public transport route network and road network, which includes determining population needs in working and educational correspondences, identifying bottlenecks in the road network, developing simulation models and developing recommendations based on the simulation results, as well as the calculation of efficiency, including the calculation of a positive social effect, economic efficiency, environmental friendliness and sustainability of the urban transport system. To prove the suggested methodology, the macro and micro models of the city under study were built taking into account the spatial planning and other specifics of the city. Thus, the case study of the city of Naberezhnye Chelny shows that the use of our methodology can help to improve the situation on the roads by optimizing the bus route network and the road infrastructure. The results showed that by implementing the proposed solutions one can decrease the amount of transport load on the bottlenecks, the number of overlapping bus routes and the traffic density.

  4. Suvorov N.V., Shleymovich M.P.
    Mathematical model of the biometric iris recognition system
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639

    Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.

  5. Svetlov K.V., Ivanov S.A.
    Stochastic model of voter dynamics in online media
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997

    In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.

    The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.

    Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.

  6. Petrov A.P., Podlipskaia O.G., Podlipskii O.K.
    Modeling the dynamics of political positions: network density and the chances of minority
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 785-796

    In some cases, information warfare results in almost whole population accepting one of two contesting points of view and rejecting the other. In other cases, however, the “majority party” gets only a small advantage over the “minority party”. The relevant question is which network characteristics of a population contribute to the minority being able to maintain some significant numbers. Given that some societies are more connected than others, in the sense that they have a higher density of social ties, this question is specified as follows: how does the density of social ties affect the chances of a minority to maintain a significant number? Does a higher density contribute to a landslide victory of majority, or to resistance of minority? To address this issue, we consider information warfare between two parties, called the Left and the Right, in the population, which is represented as a network, the nodes of which are individuals, and the connections correspond to their acquaintance and describe mutual influence. At each of the discrete points in time, each individual decides which party to support based on their attitude, i. e. predisposition to the Left or Right party and taking into account the influence of his network ties. The influence means here that each tie sends a cue with a certain probability to the individual in question in favor of the party that themselves currently support. If the tie switches their party affiliation, they begin to agitate the individual in question for their “new” party. Such processes create dynamics, i. e. the process of changing the partisanship of individuals. The duration of the warfare is exogenously set, with the final time point roughly associated with the election day. The described model is numerically implemented on a scale-free network. Numerical experiments have been carried out for various values of network density. Because of the presence of stochastic elements in the model, 200 runs were conducted for each density value, for each of which the final number of supporters of each of the parties was calculated. It is found that with higher density, the chances increase that the winner will cover almost the entire population. Conversely, low network density contributes to the chances of a minority to maintain significant numbers.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"