Результаты поиска по 'nonlinear dynamic systems':
Найдено статей: 55
  1. Dzhinchvelashvili G.A., Dzerzhinsky R.I., Denisenkova N.N.
    Quantitative assessment of seismic risk and energy concepts of earthquake engineering
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 61-76

    Currently, earthquake-resistant design of buildings based on the power calculation and presentation of effect of the earthquake static equivalent forces, which are calculated using elastic response spectra (linear-spectral method) that connects the law of motion of the soil with the absolute acceleration of the model in a nonlinear oscillator.

    This approach does not directly take into account either the influence of the duration of strong motion or the plastic behavior of the structure. Frequency content and duration of ground vibrations directly affect the energy received by the building and causing damage to its elements. Unlike power or kinematic calculation of the seismic effect on the structure can be interpreted without considering separately the forces and displacements and to provide, as the product of both variables, i.e., the work or input energy (maximum energy that can be purchased building to the earthquake).

    With the energy approach of seismic design, it is necessary to evaluate the input seismic energy in the structure and its distribution among various structural components.

    The article provides substantiation of the energy approach in the design of earthquake-resistant buildings and structures instead of the currently used method based on the power calculation and presentation of effect of the earthquake static equivalent forces, which are calculated using spectra of the reaction.

    Noted that interest in the use of energy concepts in earthquake-resistant design began with the works of Housner, which provided the seismic force in the form of the input seismic energy, using the range of speeds, and suggested that the damage in elastic-plastic system and elastic system causes one and the same input seismic energy.

    The indices of the determination of the input energy of the earthquake, proposed by various authors, are given in this paper. It is shown that modern approaches to ensuring seismic stability of structures, based on the representation of the earthquake effect as a static equivalent force, do not adequately describe the behavior of the system during an earthquake.

    In this paper, based on quantitative estimates of seismic risk analyzes developed in the NRU MSUCE Standard Organization (STO) “Seismic resistance structures. The main design provisions”. In the developed document a step forward with respect to the optimal design of earthquake-resistant structures.

    The proposed concept of using the achievements of modern methods of calculation of buildings and structures on seismic effects, which are harmonized with the Eurocodes and are not contrary to the system of national regulations.

    Views (last year): 21.
  2. Volokhova A.V., Zemlyanay E.V., Kachalov V.V., Sokotushchenko V.N., Rikhvitskiy V.S.
    Numerical investigation of the gas-condensate mixture flow in a porous medium
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 209-219

    In the last decades, the development of methods for increasing the efficiency of hydrocarbon extraction in fields with unconventional reserves containing large amounts of gas condensate is of great importance. This makes important the development of methods of mathematical modeling that realistically describe physical processes in a gas-condensate mixture in a porous medium.

    In the paper, a mathematical model which describes the dynamics of the pressure, velocity and concentration of the components of a two-component two-phase mixture entering a laboratory model of plast filled with a porous substance with known physicochemical properties is considered. The mathematical model is based on a system of nonlinear spatially one-dimensional partial differential equations with the corresponding initial and boundary conditions. Laboratory experiments show that during a finite time the system stabilizes, what gives a basis to proceed to the stationary formulation of the problem.

    The numerical solution of the formulated system of ordinary differential equations is realized in the Maple environment on the basis of the Runge–Kutta procedure. It is shown that the physical parameters of the gascondensate mixture, which characterize the modeled system in the stabilization regime, obtained on this basis, are in good agreement with the available experimental data. This confirms the correctness of the chosen approach and the validity of its further application and development for computer modeling of physical processes in gas-condensate mixtures in a porous medium. The paper presents a mathematical formulation of the system of partial differential equations and of respective system stationary equations, describes the numerical approach, and discusses the numerical results obtained in comparison with experimental data.

    Views (last year): 18. Citations: 2 (RSCI).
  3. Okulov A.Y.
    Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992

    The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.

  4. Alpeeva L.E., Tsybulin V.G.
    The cosymmetric approach to the analysis of spatial structure of populations with amount of taxis
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 661-671

    We consider a mathematical model describing the competition for a heterogeneous resource of two populations on a one-dimensional area. Distribution of populations is governed by diffusion and directed migration, species growth obeys to the logistic law. We study the corresponding problem of nonlinear parabolic equations with variable coefficients (function of a resource, parameters of growth, diffusion and migration). Approach on the theory the cosymmetric dynamic systems of V. Yudovich is applied to the analysis of population patterns. Conditions on parameters for which the problem under investigation has nontrivial cosymmetry are analytically derived. Numerical experiment is used to find an emergence of continuous family of steady states when cosymmetry takes place. The numerical scheme is based on the finite-difference discretization in space using the balance method and integration on time by Runge-Kutta method. Impact of diffusive and migration parameters on scenarios of distribution of populations is studied. In the vicinity of the line, corresponding to cosymmetry, neutral curves for diffusive parameters are calculated. We present the mappings with areas of diffusive parameters which correspond to scenarios of coexistence and extinction of species. For a number of migration parameters and resource functions with one and two maxima the analysis of possible scenarios is carried out. Particularly, we found the areas of parameters for which the survival of each specie is determined by initial conditions. It should be noted that dynamics may be nontrivial: after starting decrease in densities of both species the growth of only one population takes place whenever another specie decreases. The analysis has shown that areas of the diffusive parameters corresponding to various scenarios of population patterns are grouped near the cosymmetry lines. The derived mappings allow to explain, in particular, effect of a survival of population due to increasing of diffusive mobility in case of starvation.

    Views (last year): 2. Citations: 1 (RSCI).
  5. Khavinson M.J., Kulakov M.P., Frisman Y.Y.
    Mathematical modeling of the age groups of employed peoples by the example of the southern regions of the Russian Far East
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 787-801

    The article focuses on a nonlinear mathematical model that describes the interaction of the different age groups of the employed population. The interactions are treated by analogy with population relationship (competition, discrimination, assistance, oppression, etc). Under interaction of peoples we mean the generalized social and economic mechanisms that cause related changes in the number of employees of different age groups. Three age groups of the employed population are considered. It is young specialists (15–29 years), workers with experience (30–49 years), the employees of pre-retirement and retirement age (50 and older). The estimation of model’s parameters for the southern regions of the Far Eastern Federal District (FEFD) is executed by statistical data. Analysis of model scenarios allows us to conclude the observed number fluctuations of the different ages employees on the background of a stable total employed population may be a consequence of complex interactions between these groups of peoples. Computational experiments with the obtained values of the parameters allowed us to calculate the rate of decline and the aging of the working population and to determine the nature of the interaction between the age groups of employees that are not directly as reflected in the statistics. It was found that in FEFD the employed of 50 years and older are discriminated against by the young workers under 29, employed up to 29 and 30–49 years are in a partnership. It is shown in most developed regions (Primorsky and Khabarovsk Krai) there is “uniform” competition among different age groups of the employed population. For Primorsky Krai we were able to identify the mixing effect dynamics. It is a typical situation for systems in a state of structural adjustment. This effect is reflected in the fact the long cycles of employed population form with a significant decrease in migration inflows of employees 30–49 years. Besides, the change of migration is accompanied by a change of interaction type — from employment discrimination by the oldest of middle generation to discrimination by the middle of older generation. In less developed regions (Amur, Magadan and Jewish Autonomous Regions) there are lower values of migration balance of almost all age groups and discrimination by young workers up 29 years of other age groups and employment discrimination 30–49 years of the older generation.

    Views (last year): 4. Citations: 3 (RSCI).
  6. Malkov S.Yu.
    World dynamics patterns modeling
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 419-432

    In the article is carried out the analysis of historical process with the use of methods of synergetics (science about the nonlinear developing systems in nature and the society), developed in the works of D. S. Chernavskii in connection with to economic and social systems. It is shown that social self-organizing depending on conditions leads to the formation of both the societies with the strong internal competition (Y-structures) and cooperative type societies (X-structures). Y-structures are characteristic for the countries of the West, X-structure are characteristic for the countries of the East. It is shown that in XIX and in XX centuries occurred accelerated shaping and strengthening of Y-structures. However, at present world system entered into the period of serious structural changes in the economic, political, ideological spheres: the domination of Y-structures concludes. Are examined the possible ways of further development of the world system, connected with change in the regimes of self-organizing and limitation of internal competition. This passage will be prolonged and complex. Under these conditions it will objectively grow the value of the civilizational experience of Russia, on basis of which was formed combined type social system. It is shown that ultimately inevitable the passage from the present do-mination of Y-structures to the absolutely new global system, whose stability will be based on the new ideology, the new spirituality (i.e., new “conditional information” according D. S. Chernavskii), which makes a turn from the principles of competition to the principles of collaboration.

    Views (last year): 17.
  7. Popov V.S., Popova A.A.
    Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 79-92

    The paper deals with the mathematical model formulation for studying the nonlinear hydro-elastic response of the narrow channel wall supported by a spring with cubic nonlinearity and interacting with a pulsating viscous liquid filling the channel. In contrast to the known approaches, within the framework of the proposed mathematical model, the inertial and dissipative properties of the viscous incompressible liquid and the restoring force nonlinearity of the supporting spring were simultaneously taken into account. The mathematical model was an equations system for the coupled plane hydroelasticity problem, including the motion equations of a viscous incompressible liquid, with the corresponding boundary conditions, and the channel wall motion equation as a single-degree-of-freedom model with a cubic nonlinear restoring force. Initially, the viscous liquid dynamics was investigated within the framework of the hydrodynamic lubrication theory, i. e. without taking into account the liquid motion inertia. At the next stage, the iteration method was used to take into account the motion inertia of the viscous liquid. The distribution laws of the hydrodynamic parameters for the viscous liquid in the channel were found which made it possible to determine its reaction acting on the channel wall. As a result, it was shown that the original hydroelasticity problem is reduced to a single nonlinear equation that coincides with the Duffing equation. In this equation, the damping coefficient is determined by the liquid physical properties and the channel geometric dimensions, and taking into account the liquid motion inertia lead to the appearance of an added mass. The nonlinear equation study for hydroelastic oscillations was carried out by the harmonic balance method for the main frequency of viscous liquid pulsations. As a result, the primary steady-state hydroelastic response for the channel wall supported by a spring with softening or hardening cubic nonlinearity was found. Numerical modeling of the channel wall hydroelastic response showed the possibility of a jumping change in the amplitudes of channel wall oscillations, and also made it possible to assess the effect of the liquid motion inertia on the frequency range in which these amplitude jumps are observed.

  8. Nikonov E.G., Nazmitdinov R.G., Glukhovtsev P.I.
    Molecular dynamics studies of equilibrium configurations of equally charged particles in planar systems with circular symmetry
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 609-618

    The equilibrium configurations of charged electrons, confined in the hard disk potential, are analysed by means of the hybrid numerical algorithm. The algorithm is based on the interpolation formulas, that are obtained from the analysis of the equilibrium configurations, provided by the variational principle developed in the circular model. The solution of the nonlinear equations of the circular model yields the formation of the shell structure which is composed of the series of rings. Each ring contains a certain number of particles, which decreases as one moves from the boundary ring to the central one. The number of rings depends on the total number of electrons. The interpolation formulas provide the initial configurations for the molecular dynamics calculations. This approach makes it possible to significantly increase the speed at which an equilibrium configuration is reached for an arbitrarily chosen number of particles compared to the Metropolis annealing simulation algorithm and other algorithms based on global optimization methods.

  9. Bogomolov S.V.
    Stochastic formalization of the gas dynamic hierarchy
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779

    Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.

    Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the Kolmogorov – Fokker – Planck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.

    The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.

  10. Frisman E.Y., Kulakov M.P.
    From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109

    Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"