All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Reasons for nonlinearity: globality and noncommutativity
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 355-358Views (last year): 3.A dynamic process modeled by ordinary differential equations is considered. If a nonautonomous system of ordinary differential equations has a general solution in a certain area, than the system can be simplified by nonautonomous substitution of variables: right parts turn to zeroes. Right parts of an autonomous system of ordinary differential equations in the neighborhood of nonsingular points can be linearized. A separable system where the right part contains linear combination of autonomous vector fields and factors are functions of independent variable is considered. If the fields commute than they can be linearized by general substitution of variables.
-
Transition to chaos in the «reaction–diffusion» systems. The simplest models
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12Views (last year): 6. Citations: 1 (RSCI).The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.
-
Nonlinear boudary value problem in the case of parametric resonance
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 821-833Views (last year): 2.We construct necessary and sufficient conditions for the existence of solution of seminonlinear matrix boundary value problem for a parametric excitation system of ordinary differential equations. The convergent iteration algorithms for the construction of the solutions of the semi-nonlinear matrix boundary value problem for a parametric excitation system differential equations in the critical case have been found. Using the convergent iteration algorithms we expand solution of seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation in the neighborhood of the generating solution. Estimates for the value of residual of the solutions of the seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation are found.
-
Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630Views (last year): 3.A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.
-
Numerical solution of systems of nonlinear second-order differential equations with variable coefficients by the one-step Galerkin method
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1153-1167A nonlinear oscillatory system described by ordinary differential equations with variable coefficients is considered, in which terms that are linearly dependent on coordinates, velocities and accelerations are explicitly distinguished; nonlinear terms are written as implicit functions of these variables. For the numerical solution of the initial problem described by such a system of differential equations, the one-step Galerkin method is used. At the integration step, unknown functions are represented as a sum of linear functions satisfying the initial conditions and several given correction functions in the form of polynomials of the second and higher degrees with unknown coefficients. The differential equations at the step are satisfied approximately by the Galerkin method on a system of corrective functions. Algebraic equations with nonlinear terms are obtained, which are solved by iteration at each step. From the solution at the end of each step, the initial conditions for the next step are determined.
The corrective functions are taken the same for all steps. In general, 4 or 5 correction functions are used for calculations over long time intervals: in the first set — basic power functions from the 2nd to the 4th or 5th degrees; in the second set — orthogonal power polynomials formed from basic functions; in the third set — special linear-independent polynomials with finite conditions that simplify the “docking” of solutions in the following steps.
Using two examples of calculating nonlinear oscillations of systems with one and two degrees of freedom, numerical studies of the accuracy of the numerical solution of initial problems at various time intervals using the Galerkin method using the specified sets of power-law correction functions are performed. The results obtained by the Galerkin method and the Adams and Runge –Kutta methods of the fourth order are compared. It is shown that the Galerkin method can obtain reliable results at significantly longer time intervals than the Adams and Runge – Kutta methods.
-
Numerical investigation of the gas-condensate mixture flow in a porous medium
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 209-219Views (last year): 18. Citations: 2 (RSCI).In the last decades, the development of methods for increasing the efficiency of hydrocarbon extraction in fields with unconventional reserves containing large amounts of gas condensate is of great importance. This makes important the development of methods of mathematical modeling that realistically describe physical processes in a gas-condensate mixture in a porous medium.
In the paper, a mathematical model which describes the dynamics of the pressure, velocity and concentration of the components of a two-component two-phase mixture entering a laboratory model of plast filled with a porous substance with known physicochemical properties is considered. The mathematical model is based on a system of nonlinear spatially one-dimensional partial differential equations with the corresponding initial and boundary conditions. Laboratory experiments show that during a finite time the system stabilizes, what gives a basis to proceed to the stationary formulation of the problem.
The numerical solution of the formulated system of ordinary differential equations is realized in the Maple environment on the basis of the Runge–Kutta procedure. It is shown that the physical parameters of the gascondensate mixture, which characterize the modeled system in the stabilization regime, obtained on this basis, are in good agreement with the available experimental data. This confirms the correctness of the chosen approach and the validity of its further application and development for computer modeling of physical processes in gas-condensate mixtures in a porous medium. The paper presents a mathematical formulation of the system of partial differential equations and of respective system stationary equations, describes the numerical approach, and discusses the numerical results obtained in comparison with experimental data.
-
Analytical Approximation of a Nonlinear Model for Pest Control in Coconut Trees by the Homotopy Analysis Method
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1093-1106Rugose spiraling whitefly (RSW) is one of the major pests which affects the coconut trees. It feeds on the tree by sucking up the water content as well as the essential nutrients from leaves. It also forms sooty mold in leaves due to which the process of photosynthesis is inhibited. Biocontrol of pest is harmless for trees and crops. The experimental results in literature reveal that Pseudomallada astur is a potential predator for this pest. We investigate the dynamics of predator, Pseudomallada astur’s interaction with rugose spiralling whitefly, Aleurodicus rugioperculatus in coconut trees using a mathematical model. In this system of ordinary differential equation, the pest-predator interaction is modeled using Holling type III functional response. The parametric values are calculated from the experimental results and are tabulated. An approximate analytical solution for the system has been derived. The homotopy analysis method proves to be a suitable method for creating solutions that are valid even for moderate to large parameter values, hence we employ the same to solve this nonlinear model. The $\hbar$-curves, which give the admissible region of $\hbar$, are provided to validate the region of convergence. We have derived the approximate solution at fifth order and stopped at this order since we obtain a more approximate solution in this iteration. Numerical simulation is obtained through MATLAB. The analytical results are compared with numerical simulation and are found to be in good agreement. The biological interpretation of figures implies that the use of a predator reduces the whitefly’s growth to a greater extent.
-
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
-
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"