All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Primal-dual fast gradient method with a model
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 263-274In this work we consider a possibility to use the conception of $(\delta, L)$-model of a function for optimization tasks, whereby solving a primal problem there is a necessity to recover a solution of a dual problem. The conception of $(\delta, L)$-model is based on the conception of $(\delta, L)$-oracle which was proposed by Devolder–Glineur–Nesterov, herewith the authors proposed approximate a function with an upper bound using a convex quadratic function with some additive noise $\delta$. They managed to get convex quadratic upper bounds with noise even for nonsmooth functions. The conception of $(\delta, L)$-model continues this idea by using instead of a convex quadratic function a more complex convex function in an upper bound. Possibility to recover the solution of a dual problem gives great benefits in different problems, for instance, in some cases, it is faster to find a solution in a primal problem than in a dual problem. Note that primal-dual methods are well studied, but usually each class of optimization problems has its own primal-dual method. Our goal is to develop a method which can find solutions in different classes of optimization problems. This is realized through the use of the conception of $(\delta, L)$-model and adaptive structure of our methods. Thereby, we developed primal-dual adaptive gradient method and fast gradient method with $(\delta, L)$-model and proved convergence rates of the methods, moreover, for some classes of optimization problems the rates are optimal. The main idea is the following: we find a dual solution to an approximation of a primal problem using the conception of $(\delta, L)$-model. It is much easier to find a solution to an approximated problem, however, we have to do it in each step of our method, thereby the principle of “divide and conquer” is realized.
-
Noise removal from images using the proposed three-term conjugate gradient algorithm
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).
-
Variance reduction for minimax problems with a small dimension of one of the variables
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 257-275The paper is devoted to convex-concave saddle point problems where the objective is a sum of a large number of functions. Such problems attract considerable attention of the mathematical community due to the variety of applications in machine learning, including adversarial learning, adversarial attacks and robust reinforcement learning, to name a few. The individual functions in the sum usually represent losses related to examples from a data set. Additionally, the formulation admits a possibly nonsmooth composite term. Such terms often reflect regularization in machine learning problems. We assume that the dimension of one of the variable groups is relatively small (about a hundred or less), and the other one is large. This case arises, for example, when one considers the dual formulation for a minimization problem with a moderate number of constraints. The proposed approach is based on using Vaidya’s cutting plane method to minimize with respect to the outer block of variables. This optimization algorithm is especially effective when the dimension of the problem is not very large. An inexact oracle for Vaidya’s method is calculated via an approximate solution of the inner maximization problem, which is solved by the accelerated variance reduced algorithm Katyusha. Thus, we leverage the structure of the problem to achieve fast convergence. Separate complexity bounds for gradients of different components with respect to different variables are obtained in the study. The proposed approach is imposing very mild assumptions about the objective. In particular, neither strong convexity nor smoothness is required with respect to the low-dimensional variable group. The number of steps of the proposed algorithm as well as the arithmetic complexity of each step explicitly depend on the dimensionality of the outer variable, hence the assumption that it is relatively small.
-
Application of the streamline method for nonlinear filtration problems acceleration
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728Views (last year): 18.The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.
To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.
In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.
Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.
-
Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.
The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.
-
Nonsmooth Distributed Min-Max Optimization Using the Smoothing Technique
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 469-480Distributed saddle point problems (SPPs) have numerous applications in optimization, matrix games and machine learning. For example, the training of generated adversarial networks is represented as a min-max optimization problem, and training regularized linear models can be reformulated as an SPP as well. This paper studies distributed nonsmooth SPPs with Lipschitz-continuous objective functions. The objective function is represented as a sum of several components that are distributed between groups of computational nodes. The nodes, or agents, exchange information through some communication network that may be centralized or decentralized. A centralized network has a universal information aggregator (a server, or master node) that directly communicates to each of the agents and therefore can coordinate the optimization process. In a decentralized network, all the nodes are equal, the server node is not present, and each agent only communicates to its immediate neighbors.
We assume that each of the nodes locally holds its objective and can compute its value at given points, i. e. has access to zero-order oracle. Zero-order information is used when the gradient of the function is costly, not possible to compute or when the function is not differentiable. For example, in reinforcement learning one needs to generate a trajectory to evaluate the current policy. This policy evaluation process can be interpreted as the computation of the function value. We propose an approach that uses a smoothing technique, i. e., applies a first-order method to the smoothed version of the initial function. It can be shown that the stochastic gradient of the smoothed function can be viewed as a random two-point gradient approximation of the initial function. Smoothing approaches have been studied for distributed zero-order minimization, and our paper generalizes the smoothing technique on SPPs.
Keywords: convex optimization, distributed optimization. -
Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 473-495Non-smooth optimization often arises in many applied problems. The issues of developing efficient computational procedures for such problems in high-dimensional spaces are very topical. First-order methods (subgradient methods) are well applicable here, but in fairly general situations they lead to low speed guarantees for large-scale problems. One of the approaches to this type of problem can be to identify a subclass of non-smooth problems that allow relatively optimistic results on the rate of convergence. For example, one of the options for additional assumptions can be the condition of a sharp minimum, proposed in the late 1960s by B. T. Polyak. In the case of the availability of information about the minimal value of the function for Lipschitz-continuous problems with a sharp minimum, it turned out to be possible to propose a subgradient method with a Polyak step-size, which guarantees a linear rate of convergence in the argument. This approach made it possible to cover a number of important applied problems (for example, the problem of projecting onto a convex compact set). However, both the condition of the availability of the minimal value of the function and the condition of a sharp minimum itself look rather restrictive. In this regard, in this paper, we propose a generalized condition for a sharp minimum, somewhat similar to the inexact oracle proposed recently by Devolder – Glineur – Nesterov. The proposed approach makes it possible to extend the class of applicability of subgradient methods with the Polyak step-size, to the situation of inexact information about the value of the minimum, as well as the unknown Lipschitz constant of the objective function. Moreover, the use of local analogs of the global characteristics of the objective function makes it possible to apply the results of this type to wider classes of problems. We show the possibility of applying the proposed approach to strongly convex nonsmooth problems, also, we make an experimental comparison with the known optimal subgradient method for such a class of problems. Moreover, there were obtained some results connected to the applicability of the proposed technique to some types of problems with convexity relaxations: the recently proposed notion of weak $\beta$-quasi-convexity and ordinary quasiconvexity. Also in the paper, we study a generalization of the described technique to the situation with the assumption that the $\delta$-subgradient of the objective function is available instead of the usual subgradient. For one of the considered methods, conditions are found under which, in practice, it is possible to escape the projection of the considered iterative sequence onto the feasible set of the problem.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"