Результаты поиска по 'numerical analysis':
Найдено статей: 147
  1. Zeyde K.M., Vardugina A.Y., Marvin S.V.
    Fast method for analyzing the electromagnetic field perturbation by small spherical scatterer
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1039-1050

    In this work, we consider a special approximation of the general perturbation formula for the electromagnetic field by a set of electrically small inhomogeneities located in the domain of interest. The problem considered in this paper arises in many applications of technical electrodynamics, radar technologies and subsurface remote sensing. In the general case, it is formulated as follows: at some point in the perturbed domain, it is necessary to determine the amplitude of the electromagnetic field. The perturbation of electromagnetic waves is caused by a set of electrically small scatterers distributed in space. The source of electromagnetic waves is also located in perturbed domain. The problem is solved by introducing the far field approximation and through the formulation for the scatterer radar cross section value. This, in turn, allows one to significantly speed up the calculation process of the perturbed electromagnetic field by a set of a spherical inhomogeneities identical to each other with arbitrary electrophysical parameters. In this paper, we consider only the direct scattering problem; therefore, all parameters of the scatterers are known. In this context, it may be argued that the formulation corresponds to the well-posed problem and does not imply the solution of the integral equation in the generalized formula. One of the features of the proposed algorithm is the allocation of a characteristic plane at the domain boundary. All points of observation of the state of the system belong to this plane. Set of the scatterers is located inside the observation region, which is formed by this surface. The approximation is tested by comparing the results obtained with the solution of the general formula method for the perturbation of the electromagnetic field. This approach, among other things, allows one to remove a number of restrictions on the general perturbation formula for E-filed analysis.

  2. Bratsun D.A., Buzmakov M.D.
    Repressilator with time-delayed gene expression. Part II. Stochastic description
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 587-609

    The repressilator is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements $lacI$, $\lambda cI$ and $tetR$, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In our previous paper [Bratsun et al., 2018], we proposed a mathematical model of a delayed repressillator and studied its properties within the framework of a deterministic description. We assume that delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using gene engineering technologies. In this work, we apply the stochastic description of dynamic processes in a delayed repressilator, which is an important addition to deterministic analysis due to the small number of molecules involved in gene regulation. The stochastic study is carried out numerically using the Gillespie algorithm, which is modified for time delay systems. We present the description of the algorithm, its software implementation, and the results of benchmark simulations for a onegene delayed autorepressor. When studying the behavior of a repressilator, we show that a stochastic description in a number of cases gives new information about the behavior of a system, which does not reduce to deterministic dynamics even when averaged over a large number of realizations. We show that in the subcritical range of parameters, where deterministic analysis predicts the absolute stability of the system, quasi-regular oscillations may be excited due to the nonlinear interaction of noise and delay. Earlier, we have discovered within the framework of the deterministic description, that there exists a long-lived transient regime, which is represented in the phase space by a slow manifold. This mode reflects the process of long-term synchronization of protein pulsations in the work of the repressilator genes. In this work, we show that the transition to the cooperative mode of gene operation occurs a two order of magnitude faster, when the effect of the intrinsic noise is taken into account. We have obtained the probability distribution of moment when the phase trajectory leaves the slow manifold and have determined the most probable time for such a transition. The influence of the intrinsic noise of chemical reactions on the dynamic properties of the repressilator is discussed.

  3. Suganya G., Senthamarai R.
    Analytical Approximation of a Nonlinear Model for Pest Control in Coconut Trees by the Homotopy Analysis Method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1093-1106

    Rugose spiraling whitefly (RSW) is one of the major pests which affects the coconut trees. It feeds on the tree by sucking up the water content as well as the essential nutrients from leaves. It also forms sooty mold in leaves due to which the process of photosynthesis is inhibited. Biocontrol of pest is harmless for trees and crops. The experimental results in literature reveal that Pseudomallada astur is a potential predator for this pest. We investigate the dynamics of predator, Pseudomallada astur’s interaction with rugose spiralling whitefly, Aleurodicus rugioperculatus in coconut trees using a mathematical model. In this system of ordinary differential equation, the pest-predator interaction is modeled using Holling type III functional response. The parametric values are calculated from the experimental results and are tabulated. An approximate analytical solution for the system has been derived. The homotopy analysis method proves to be a suitable method for creating solutions that are valid even for moderate to large parameter values, hence we employ the same to solve this nonlinear model. The $\hbar$-curves, which give the admissible region of $\hbar$, are provided to validate the region of convergence. We have derived the approximate solution at fifth order and stopped at this order since we obtain a more approximate solution in this iteration. Numerical simulation is obtained through MATLAB. The analytical results are compared with numerical simulation and are found to be in good agreement. The biological interpretation of figures implies that the use of a predator reduces the whitefly’s growth to a greater extent.

  4. Bashkirtseva I.A., Perevalova T.V., Ryashko L.B.
    Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356

    This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.

  5. The main aim, formulated in the first part of article, is to carry out detailed numerical studies of the chemical, ionization, optical, and temperature characteristics of the lower ionosphere perturbed by powerful radio emission. The brief review of the main experimental and theoretical researches of physical phenomena occurring in the ionosphere when it is heated by high-power high-frequency radio waves from heating facilities is given. The decisive role of the $D$-region of the ionosphere in the absorption of radio beam energy is shown. A detailed analysis of kinetic processes in the disturbed $D$-region, which is the most complex in kinetic terms, has been performed. It is shown that for a complete description of the ionization-chemical and optical characteristics of the disturbed region, it is necessary to take into account more than 70 components, which, according to their main physical content, can be conveniently divided into five groups. A kinetic model is presented to describe changes in the concentrations of components interacting (the total number of reactions is 259). The system of kinetic equations was solved using a semi-implicit numerical method specially adapted to such problems. Based on the proposed structure, a software package was developed in which the algorithm scheme allowed changing both the content of individual program blocks and their number, which made it possible to conduct detailed numerical studies of individual processes in the behavior of the parameters of the perturbed region. The complete numerical algorithm is based on the two-temperature approximation, in which the main attention was paid to the calculation of the electron temperature, since its behavior is determined by inelastic kinetic processes involving electrons. The formulation of the problem is of a rather general nature and makes it possible to calculate the parameters of the disturbed ionosphere in a wide range of powers and frequencies of radio emission. Based on the developed numerical technique, it is possible to study a wide range of phenomena both in the natural and disturbed ionosphere.

  6. The article deals with the nonlinear boundary-value problem of hydrogen permeability corresponding to the following experiment. A membrane made of the target structural material heated to a sufficiently high temperature serves as the partition in the vacuum chamber. Degassing is performed in advance. A constant pressure of gaseous (molecular) hydrogen is built up at the inlet side. The penetrating flux is determined by mass-spectrometry in the vacuum maintained at the outlet side.

    A linear model of dependence on concentration is adopted for the coefficient of dissolved atomic hydrogen diffusion in the bulk. The temperature dependence conforms to the Arrhenius law. The surface processes of dissolution and sorptiondesorption are taken into account in the form of nonlinear dynamic boundary conditions (differential equations for the dynamics of surface concentrations of atomic hydrogen). The characteristic mathematical feature of the boundary-value problem is that concentration time derivatives are included both in the diffusion equation and in the boundary conditions with quadratic nonlinearity. In terms of the general theory of functional differential equations, this leads to the so-called neutral type equations and requires a more complex mathematical apparatus. An iterative computational algorithm of second-(higher- )order accuracy is suggested for solving the corresponding nonlinear boundary-value problem based on explicit-implicit difference schemes. To avoid solving the nonlinear system of equations at every time step, we apply the explicit component of difference scheme to slower sub-processes.

    The results of numerical modeling are presented to confirm the fitness of the model to experimental data. The degrees of impact of variations in hydrogen permeability parameters (“derivatives”) on the penetrating flux and the concentration distribution of H atoms through the sample thickness are determined. This knowledge is important, in particular, when designing protective structures against hydrogen embrittlement or membrane technologies for producing high-purity hydrogen. The computational algorithm enables using the model in the analysis of extreme regimes for structural materials (pressure drops, high temperatures, unsteady heating), identifying the limiting factors under specific operating conditions, and saving on costly experiments (especially in deuterium-tritium investigations).

  7. Aksenenko A.Yu., Korobova N.V., Dmitriev A.M.
    The analysis of various design methods for production of housing parts by combined extrusion
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 967-974

    The article contains review of various estimation methods of combined extrusion process for the representative part, also analytical calculations and numerical simulation of this process using program DEFORM 3D. The comparative analysis of the results obtained by different methods was made. The assumptions of the main factors having a significant effect on the reliability of the results were formulated.

    Views (last year): 3. Citations: 7 (RSCI).
  8. The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.

    Views (last year): 11.
  9. Ketova K.V., Romanovsky Y.M., Rusyak I.G.
    Mathematical modeling of the human capital dynamic
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342

    In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.

    This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.

    The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.

    Views (last year): 34.
  10. Methi G., Kumar A.
    Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1091-1099

    The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"