Результаты поиска по 'numerical modeling':
Найдено статей: 316
  1. Aksenov A.A., Alexandrova N.A., Budnikov A.V., Zhestkov M.N., Sazonova M.L., Kochetkov M.A.
    Simulation of multi-temperature flows turbulent mixing in a T-junctions by the LES approach in FlowVision software package
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 827-843

    The paper presents the results of numerical simulation of different-temperature water flows turbulent mixing in a T-junctions in the FlowVision software package. The article describes in detail an experimental stand specially designed to obtain boundary conditions that are simple for most computational fluid dynamics software systems. Values of timeaveraged temperatures and velocities in the control sensors and planes were obtained according to the test results. The article presents the system of partial differential equations used in the calculation describing the process of heat and mass transfer in a liquid using the Smagorinsky turbulence model. Boundary conditions are specified that allow setting the random velocity pulsations at the entrance to the computational domain. Distributions of time-averaged water velocity and temperature in control sections and sensors are obtained. The simulation is performed on various computational grids, for which the axes of the global coordinate system coincide with the directions of hot and cold water flows. The possibility for FlowVision PC to construct a computational grid in the simulation process based on changes in flow parameters is shown. The influence of such an algorithm for constructing a computational grid on the results of calculations is estimated. The results of calculations on a diagonal grid using a beveled scheme are given (the direction of the coordinate lines does not coincide with the direction of the tee pipes). The high efficiency of the beveled scheme is shown when modeling flows whose general direction does not coincide with the faces of the calculated cells. A comparison of simulation results on various computational grids is carried out. The numerical results obtained in the FlowVision PC are compared with experimental data and calculations performed using other computing programs. The results of modeling turbulent mixing of water flow of different temperatures in the FlowVision PC are closer to experimental data in comparison with calculations in CFX ANSYS. It is shown that the application of the LES turbulence model on relatively small computational grids in the FlowVision PC allows obtaining results with an error within 5%.

  2. Borisov A.V., Trifonov A.Y., Shapovalov A.V.
    Numerical modeling of population 2D-dynamics with nonlocal interaction
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 33-40

    Numerical solutions for the two-dimensional reaction-diffusion equation with nonlocal nonlinearity are obtained. The solutions reveal formation of dissipative structures. Structures arising from initial distributions with one and several centers of localization are considered. Formation of extending circular structures is shown. Peculiarities of formation and interaction of extending circular structures depending on  nonlocal interaction are considered.

    Views (last year): 3. Citations: 5 (RSCI).
  3. Shultz D.S., Krainov A.Y.
    Mathematical modeling of SHS process in heterogeneous reactive powder mixtures
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 147-153

    In this paper we present a mathematical model and numerical results on a propagation of the combustion front of the SHS compound, where the rate of chemical reaction at each point of the SHS sample is determined by solving the problem of diffusion and chemical reaction in the reaction cell. We obtained the dependence of the combustion front on the size of the average element of a heterogeneous structure with different values of the diffusion intensity. These dependences agree qualitatively with the experimental data. We studied the effect of activation energy for diffusion on the propagation velocity of combustion front. It is revealed the propagation of the combustion front transforms to an oscillatory regime at increase in activation energy of diffusion. A transition boundary of the combustion front propagation from the steady-state regime to the oscillatory one is defined.

    Views (last year): 2. Citations: 5 (RSCI).
  4. Chernov I.A., Ivashko E.E., Nikitina N.N., Gabis I.E.
    Numerical identification of the dehydriding model in a BOINC-based grid system
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 37-45

    In the paper we consider the inverse problem of evaluating kinetic parameters of the model of dehydriding of metal powder using experimental data. The «blind search» in the space of parameters revealed multiple physically reasonable solutions. The solutions were obtained using high–performance computational modeling based on BOINC–grid.

    Citations: 6 (RSCI).
  5. Karaban V.M., Sukhorukov M.P.
    The mathematical formulation of the temperature control chip within a three-dimensional model and the solution method
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 805-812

    The work deals the implementation of a three-dimensional mathematical model of the nonlinear time-varying temperature control and a numerical method of solving it.

    Views (last year): 1. Citations: 1 (RSCI).
  6. Yakovleva T.V.
    Review of MRI processing techniques and elaboration of a new two-parametric method of moments
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 231-244

    The paper provides a review of the existing methods of signals’ processing within the conditions of the Rice statistical model applicability. There are considered the principle development directions, the existing limitations and the improvement possibilities concerning the methods of solving the tasks of noise suppression and analyzed signals’ filtration by the example of magnetic-resonance visualization. A conception of a new approach to joint calculation of Rician signal’s both parameters has been developed based on the method of moments in two variants of its implementation. The computer simulation and the comparative analysis of the obtained numerical results have been conducted.

    Citations: 10 (RSCI).
  7. Martyushev S.G., Sheremet M.A.
    Numerical analysis of convective-radiative heat transfer in an air enclosure with a local heat source
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 383-396

    Mathematical simulation of natural convection and surface radiation in a square air enclosure having isothermal vertical walls with a local heat source of constant temperature has been carried out. Mathematical model has been formulated on the basis of the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation and diathermancy of air. Distributions of streamlines and isotherms reflecting an effect of Rayleigh number $ 10^3 \leqslant Ra \leqslant 10^6 $, surface emissivity $0 \leqslant ε < 1$, ratio between the length of heat source and the size of enclosure $0.2 \leqslant l/L \leqslant 0.6$ and dimensionless time $0 \leqslant τ \leqslant 100$ on fluid flow and heat transfer have been obtained. Correlations for the average heat transfer coefficient in dependence on $Ra$, $ε$ and $l/L$ have been ascertained.

    Views (last year): 1. Citations: 5 (RSCI).
  8. Vlasenko V.D., Verhoturov A.D.
    Numerical research elastic and strength characteristics of materials with coverings, received by an electrospark alloying
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 671-678

    In the work is numerically investigated the influence of elastic and strength characteristics of hard materials with coatings of refractory compounds, received electric-spark doping, at influence of temperature and power factors using the finite element method.

    Views (last year): 3. Citations: 5 (RSCI).
  9. Demianov A.Y., Dinariev O.Y., Lisitsin D.A.
    Numerical simulation of frequency dependence of dielectric permittivity and electrical conductivity of saturated porous media
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 765-773

    This article represents numerical simulation technique for determining effective spectral electromagnetic properties (effective electrical conductivity and relative dielectric permittivity) of saturated porous media. Information about these properties is vastly applied during the interpretation of petrophysical exploration data of boreholes and studying of rock core samples. The main feature of the present paper consists in the fact, that it involves three-dimensional saturated digital rock models, which were constructed based on the combined data considering microscopic structure of the porous media and the information about capillary equilibrium of oil-water mixture in pores. Data considering microscopic structure of the model are obtained by means of X-ray microscopic tomography. Information about distributions of saturating fluids is based on hydrodynamic simulations with density functional technique. In order to determine electromagnetic properties of the numerical model time-domain Fourier transform of Maxwell equations is considered. In low frequency approximation the problem can be reduced to solving elliptic equation for the distribution of complex electric potential. Finite difference approximation is based on discretization of the model with homogeneous isotropic orthogonal grid. This discretization implies that each computational cell contains exclusively one medium: water, oil or rock. In order to obtain suitable numerical model the distributions of saturating components is segmented. Such kind of modification enables avoiding usage of heterogeneous grids and disregards influence on the results of simulations of the additional techniques, required in order to determine properties of cells, filled with mixture of media. Corresponding system of differential equations is solved by means of biconjugate gradient stabilized method with multigrid preconditioner. Based on the results of complex electric potential computations average values of electrical conductivity and relative dielectric permittivity is calculated. For the sake of simplicity, this paper considers exclusively simulations with no spectral dependence of conductivities and permittivities of model components. The results of numerical simulations of spectral dependence of effective characteristics of heterogeneously saturated porous media (electrical conductivity and relative dielectric permittivity) in broad range of frequencies and multiple water saturations are represented in figures and table. Efficiency of the presented approach for determining spectral electrical properties of saturated rocks is discussed in conclusion.

    Views (last year): 8.
  10. Gorr G.V., Shchetinina E.K.
    A new form of differential equations in modeling of the motion of a heavy solid
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884

    The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.

    Views (last year): 6.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"