All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Continuum deployable shells made of thin plates
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 3-29Citations: 3 (RSCI).This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the sizes of the six loop faces. When thin plates were used, the continuum approximation of the deployed net could be interpreted as a shell with a wide variety of local curvatures. Kinematics of the continuum model is analyzed by the method of Cartan moving hedron. Mechanical behavior of continuum nets is studied when cylindrical hinges between the plates are completed of shape memory plastic materials. The paper researches into shell transformations from one stable form to the other. Various practical applications of the continuum nets are demonstrated.
-
Review of Modern State of Quantum Technologies
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 165-179Views (last year): 56.At present modern quantum technologies can get a new twist of development, which will certainly give an opportunity to obtain solutions for numerous problems that previously could not be solved in the framework of “traditional” paradigms and computational models. All mankind stands at the threshold of the so-called “second quantum revolution”, and its short-term and long-term consequences will affect virtually all spheres of life of a global society. Such directions and branches of science and technology as materials science, nanotechnology, pharmacology and biochemistry in general, modeling of chaotic dynamic processes (nuclear explosions, turbulent flows, weather and long-term climatic phenomena), etc. will be directly developed, as well as the solution of any problems, which reduce to the multiplication of matrices of large dimensions (in particular, the modeling of quantum systems). However, along with extraordinary opportunities, quantum technologies carry with them certain risks and threats, in particular, the scrapping of all information systems based on modern achievements in cryptography, which will entail almost complete destruction of secrecy, the global financial crisis due to the destruction of the banking sector and compromise of all communication channels. Even in spite of the fact that methods of so-called “post-quantum” cryptography are already being developed today, some risks still need to be realized, since not all long-term consequences can be calculated. At the same time, one should be prepared to all of the above, including by training specialists working in the field of quantum technologies and understanding all their aspects, new opportunities, risks and threats. In this connection, this article briefly describes the current state of quantum technologies, namely, quantum sensorics, information transfer using quantum protocols, a universal quantum computer (hardware), and quantum computations based on quantum algorithms (software). For all of the above, forecasts are given for the development of the impact on various areas of human civilization.
-
Computer research of the holomorphic dynamics of exponential and linear-exponential maps
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 383-405Views (last year): 51. Citations: 1 (RSCI).The work belongs to the direction of experimental mathematics, which investigates the properties of mathematical objects by the computing facilities of a computer. The base is an exponential map, its topological properties (Cantor's bouquets) differ from properties of polynomial and rational complex-valued functions. The subject of the study are the character and features of the Fatou and Julia sets, as well as the equilibrium points and orbits of the zero of three iterated complex-valued mappings: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, with $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. For a quasilinear map g having no analyticity characteristic, two bifurcation transitions were discovered: the creation of a new equilibrium point (for which the critical value of the linear parameter was found and the bifurcation consists of “fork” type and “saddle”-node transition) and the transition to the radical transformation of the Fatou set. A nontrivial character of convergence to a fixed point is revealed, which is associated with the appearance of “valleys” on the graph of convergence rates. For two other maps, the monoperiodicity of regimes is significant, the phenomenon of “period doubling” is noted (in one case along the path $39\to 3$, in the other along the path $17\to 2$), and the coincidence of the period multiplicity and the number of sleeves of the Julia spiral in a neighborhood of a fixed point is found. A rich illustrative material, numerical results of experiments and summary tables reflecting the parametric dependence of maps are given. Some questions are formulated in the paper for further research using traditional mathematics methods.
-
Quantile shape measures for heavy-tailed distributions
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1041-1077Currently, journal papers contain numerous examples of the use of heavy-tailed distributions for applied research on various complex systems. Models of extreme data are usually limited to a small set of distribution shapes that in this field of applied research historically been used. It is possible to increase the composition of the set of probability distributions shapes through comparing the measures of the distribution shapes and choosing the most suitable implementations. The example of a beta distribution of the second kind shown that the lack of definability of the moments of heavy-tailed implementations of the beta family of distributions limits the applicability of the existing classical methods of moments for studying the distributions shapes when are characterized heavy tails. For this reason, the development of new methods for comparing distributions based on quantile shape measures free from the restrictions on the shape parameters remains relevant study the possibility of constructing a space of quantile measures of shapes for comparing distributions with heavy tails. The operation purpose consists in computer research of creation possibility of space of the quantile’s measures for the comparing of distributions property with heavy tails. On the basis of computer simulation there the distributions implementations in measures space of shapes were been shown. Mapping distributions in space only of the parametrical measures of shapes has shown that the imposition of regions for heavy tails distribution made impossible compare the shape of distributions belonging to different type in the space of quantile measures of skewness and kurtosis. It is well known that shape information measures such as entropy and entropy uncertainty interval contain additional information about the shape measure of heavy-tailed distributions. In this paper, a quantile entropy coefficient is proposed as an additional independent measure of shape, which is based on the ratio of entropy and quantile uncertainty intervals. Also estimates of quantile entropy coefficients are obtained for a number of well-known heavy-tailed distributions. The possibility of comparing the distributions shapes with realizations of the beta distribution of the second kind is illustrated by the example of the lognormal distribution and the Pareto distribution. Due to mapping the position of stable distributions in the three-dimensional space of quantile measures of shapes estimate made it possible the shape parameters to of the beta distribution of the second kind, for which shape is closest to the Lévy shape. From the paper material it follows that the display of distributions in the three-dimensional space of quantile measures of the forms of skewness, kurtosis and entropy coefficient significantly expands the possibility of comparing the forms for distributions with heavy tails.
-
Problem of material radiation coefficients approximation at a given energy band
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 217-230The problem of formation of a material, which has the coefficients of attenuations and scattering close or coinciding with the same coefficients for some other predetermined material was considered. A computer processing of values of these coefficients for a big set of various materials has been carried out and their dependence on radiation energy value was studied. The conclusion was drawn about probability of successful solution of the problem in many cases and difficulties, which may occur were pointed out. A set of computer calculations carried out for some specific materials is provided.
-
Views (last year): 2.
The paper demonstrates a fractal system of thin plates connected with hinges. The system can be studied using the methods of mechanics of solids with internal degrees of freedom. The structure is deployable — initially it is close to a small diameter one-dimensional manifold that occupies significant volume after deployment. The geometry of solids is studied using the method of the moving hedron. The relations enabling to define the geometry of the introduced manifolds are derived based on the Cartan structure equations. The proof substantially makes use of the fact that the fractal consists of thin plates that are not long compared to the sizes of the system. The mechanics is described for the solids with rigid plastic hinges between the plates, when the hinges are made of shape memory material. Based on the ultimate load theorems, estimates are performed to specify internal pressure that is required to deploy the package into a three-dimensional structure, and heat input needed to return the system into its initial state.
-
Analysis of a numerical method for studying upward flame spread over solid material
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 755-774Views (last year): 33.Reduction of the fire hazard of polymeric materials is one of the important scientific and technical problems. Since complexity of experimental procedures associated with flame spread, establishing reacting flows theoretical basics turned out to be crucial field of modern fundamental science. In order to determine parameters of flame spread over solid combustible materials numerical modelling methods have to be improved. Large amount of physical and chemical processes taking place needed to be resolved not just separately one by one but in connection with each other in gas and solid phases.
Upward flame spread over vertical solid combustible material is followed by unsteady eddy structures of gas flow in the vicinity of flame zone caused by thermal instability and natural convection forces accelerating hot combustion products. At every moment different amount of heat energy is transferred from hot gas-phase flame to solid material because of eddy flow structures. Therefore, satisfactory heat flux and eddy flow modelling are important to estimate flame spread rate.
In the current study we evaluated parameters of numerical method for flame spread over solid combustible material problem taking into account coupled nature of complex interaction between gas phase, solid material and eddy flow resulted from natural convection. We studied aspects of different approximation schemes used in differential equations integration process over space and time, of fields relaxation during iterations procedure carried out inside time step, of different time step values.
Mathematical model formulated allows to simulate flame spread over solid combustible material. Fluid dynamics is modeled by Navier – Stokes system of equations, eddy flow is described by combined turbulent model RANS–LES (DDES), turbulent combustion is resolved by modified turbulent combustion model Eddy Break-Up taking into account kinetic effects, radiation transfer is modeled by spherical harmonics method of first order approximation (P1). The equations presented are solved in OpenFOAM software.
-
Cosmological models of the Universe without a Beginning and without a singularity
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.
These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.
In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.
In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.
The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.
In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.
We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.
In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.
But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.
It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.
The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.
-
Motion control simulating in a viscous liquid of a body with variable geometry of weights
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 371-381Views (last year): 2. Citations: 16 (RSCI).Statement of a problem of management of movement of a body in a viscous liquid is given. Movement bodies it is induced by moving of internal material points. On a basis the numerical decision of the equations of movement of a body and the hydrodynamic equations approximating dependencies for viscous forces are received. With application approximations the problem of optimum control of body movement dares on the set trajectory with application of hybrid genetic algorithm. Possibility of the directed movement of a body under action is established back and forth motion of an internal point. Optimum control movement direction it is carried out by motion of other internal point on circular trajectory with variable speed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"