Результаты поиска по 'computer research':
Найдено статей: 66
  1. Gavrilov V.B., Golutvin I.A., Kodolova O.L., Korenkov V.V., Levchuk L.G., Shmatov S.V., Tikhonenko E.A., Zhiltsov V.E.
    RDMS CMS computing: current status and plans
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 395-398

    The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. More than twenty institutes from Russia and Joint Institute for Nuclear Research (JINR) are involved in Russia and Dubna Member States (RDMS) CMS Collaboration. A proper computing grid-infrastructure has been constructed at the RDMS institutes for the participation in the running phase of the CMS experiment. Current status of RDMS CMS computing and plans of its development to the next LHC start in 2015 are presented.

    Views (last year): 2.
  2. Bashashin M.V., Zemlyanay E.V., Rahmonov I.R., Shukrinov J.M., Atanasova P.C., Volokhova A.V.
    Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604

    We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.

    Views (last year): 7. Citations: 6 (RSCI).
  3. The 3rd BRICS Mathematics Conference
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016
  4. Matyushkin I.V., Zapletina M.A.
    Computer research of the holomorphic dynamics of exponential and linear-exponential maps
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 383-405

    The work belongs to the direction of experimental mathematics, which investigates the properties of mathematical objects by the computing facilities of a computer. The base is an exponential map, its topological properties (Cantor's bouquets) differ from properties of polynomial and rational complex-valued functions. The subject of the study are the character and features of the Fatou and Julia sets, as well as the equilibrium points and orbits of the zero of three iterated complex-valued mappings: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, with $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. For a quasilinear map g having no analyticity characteristic, two bifurcation transitions were discovered: the creation of a new equilibrium point (for which the critical value of the linear parameter was found and the bifurcation consists of “fork” type and “saddle”-node transition) and the transition to the radical transformation of the Fatou set. A nontrivial character of convergence to a fixed point is revealed, which is associated with the appearance of “valleys” on the graph of convergence rates. For two other maps, the monoperiodicity of regimes is significant, the phenomenon of “period doubling” is noted (in one case along the path $39\to 3$, in the other along the path $17\to 2$), and the coincidence of the period multiplicity and the number of sleeves of the Julia spiral in a neighborhood of a fixed point is found. A rich illustrative material, numerical results of experiments and summary tables reflecting the parametric dependence of maps are given. Some questions are formulated in the paper for further research using traditional mathematics methods.

    Views (last year): 51. Citations: 1 (RSCI).
  5. Sokolov S.V.
    In memory of Alexey Vladimirovich Borisov 1965–2021
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 9-14

    On January 24, a famous scientist, doctor of physical and mathematical sciences, professor and laureate of the Prize of S.V. Kowalevsky Alexey Vladimirovich Borisov passed away. Alexey Vladimirovich was born and raised in Moscow. After graduating from high school, he entered the Faculty of Special Mechanical Engineering of the Bauman Moscow State Technical University. Already during his studies, Alexey Vladimirovich attends a scientific seminar at the Faculty of Mechanics and Mathematics of the Lomnosov Moscow State University, which largely determines the direction of his future research. After defending his Ph.D. thesis, Alexey Vladimirovich creates a scientific group in Izhevsk, his subsequent scientific biography is very wide: Yekaterinburg, Cheboksary, Innopolis, Dolgoprudny, Moscow. Borisov founds and heads the series of scientific journals Regular and Chaotic Dynamics, Nonlinear Dynamics, is the editor-in-chief in the journals Bulletin of Udmurt University, Computer research and modeling. The scientific heritage of A.V. Borisov is extensive, the list of publications is more than 200 works, more than 170 of which have been published in journals indexed by international databases Scopus and Web of Science. More than 10 monographs belong to him.

  6. Matyushkin I.V., Rubis P.D., Zapletina M.A.
    Experimental study of the dynamics of single and connected in a lattice complex-valued mappings: the architecture and interface of author’s software for modeling
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1101-1124

    The paper describes a free software for research in the field of holomorphic dynamics based on the computational capabilities of the MATLAB environment. The software allows constructing not only single complex-valued mappings, but also their collectives as linearly connected, on a square or hexagonal lattice. In the first case, analogs of the Julia set (in the form of escaping points with color indication of the escape velocity), Fatou (with chaotic dynamics highlighting), and the Mandelbrot set generated by one of two free parameters are constructed. In the second case, only the dynamics of a cellular automaton with a complex-valued state of the cells and of all the coefficients in the local transition function is considered. The abstract nature of object-oriented programming makes it possible to combine both types of calculations within a single program that describes the iterated dynamics of one object.

    The presented software provides a set of options for the field shape, initial conditions, neighborhood template, and boundary cells neighborhood features. The mapping display type can be specified by a regular expression for the MATLAB interpreter. This paper provides some UML diagrams, a short introduction to the user interface, and some examples.

    The following cases are considered as example illustrations containing new scientific knowledge:

    1) a linear fractional mapping in the form $Az^{n} +B/z^{n} $, for which the cases $n=2$, $4$, $n>1$, are known. In the portrait of the Fatou set, attention is drawn to the characteristic (for the classical quadratic mapping) figures of <>, showing short-period regimes, components of conventionally chaotic dynamics in the sea;

    2) for the Mandelbrot set with a non-standard position of the parameter in the exponent $z(t+1)\Leftarrow z(t)^{\mu } $ sketch calculations reveal some jagged structures and point clouds resembling Cantor's dust, which are not Cantor's bouquets that are characteristic for exponential mapping. Further detailing of these objects with complex topology is required.

  7. Pechenyuk A.V.
    Benchmarking of CEA FlowVision in ship flow simulation
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 889-899

    In the field of naval architecture the most competent recommendations in verification and validation of the numerical methods were developed within an international workshop on the numerical prediction of ship viscous flow which is held every five years in Gothenburg (Sweden) and Tokyo (Japan) alternately. In the workshop “Gothenburg–2000” three modern hull forms with reliable experimental data were introduced as test cases. The most general case among them is a containership KCS, a ship of moderate specific speed and fullness. The paper focuses on a numerical research of KCS hull flow, which was made according to the formal procedures of the workshop with the help of CEA FlowVision. Findings were compared with experimental data and computational data of other key CEA.

    Views (last year): 1. Citations: 5 (RSCI).
  8. Smirnova O., Kónya B., Cameron D., Nilsen J.K., Filipčič A.
    ARC-CE: updates and plans
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 407-414

    ARC Compute Element is becoming more popular in WLCG and EGI infrastructures, being used not only in the Grid context, but also as an interface to HPC and Cloud resources. It strongly relies on community contributions, which helps keeping up with the changes in the distributed computing landscape. Future ARC plans are closely linked to the needs of the LHC computing, whichever shape it may take. There are also numerous examples of ARC usage for smaller research communities through national computing infrastructure projects in different countries. As such, ARC is a viable solution for building uniform distributed computing infrastructures using a variety of resources.

  9. Andruschenko V.A., Maksimov F.A., Syzranova N.G.
    Simulation of flight and destruction of the Benešov bolid
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 605-618

    Comets and asteroids are recognized by the scientists and the governments of all countries in the world to be one of the most significant threats to the development and even the existence of our civilization. Preventing this threat includes studying the motion of large meteors through the atmosphere that is accompanied by various physical and chemical phenomena. Of particular interest to such studies are the meteors whose trajectories have been recorded and whose fragments have been found on Earth. Here, we study one of such cases. We develop a model for the motion and destruction of natural bodies in the Earth’s atmosphere, focusing on the Benešov bolid (EN070591), a bright meteor registered in 1991 in the Czech Republic by the European Observation System. Unique data, that includes the radiation spectra, is available for this bolid. We simulate the aeroballistics of the Benešov meteoroid and of its fragments, taking into account destruction due to thermal and mechanical processes. We compute the velocity of the meteoroid and its mass ablation using the equations of the classical theory of meteor motion, taking into account the variability of the mass ablation along the trajectory. The fragmentation of the meteoroid is considered using the model of sequential splitting and the statistical stress theory, that takes into account the dependency of the mechanical strength on the length scale. We compute air flows around a system of bodies (shards of the meteoroid) in the regime where mutual interplay between them is essential. To that end, we develop a method of simulating air flows based on a set of grids that allows us to consider fragments of various shapes, sizes, and masses, as well as arbitrary positions of the fragments relative to each other. Due to inaccuracies in the early simulations of the motion of this bolid, its fragments could not be located for about 23 years. Later and more accurate simulations have allowed researchers to locate four of its fragments rather far from the location expected earlier. Our simulations of the motion and destruction of the Benešov bolid show that its interaction with the atmosphere is affected by multiple factors, such as the mass and the mechanical strength of the bolid, the parameters of its motion, the mechanisms of destruction, and the interplay between its fragments.

    Views (last year): 24. Citations: 1 (RSCI).
  10. Krechet V.G., Oshurko V.B., Kisser A.E.
    Cosmological models of the Universe without a Beginning and without a singularity
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486

    A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.

    These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.

    In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.

    In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.

    The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.

    In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.

    We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.

    In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.

    But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.

    It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.

    The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.

Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"