All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Effective rank of a problem of function estimation based on measurement with an error of finite number of its linear functionals
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 189-202The problem of restoration of an element f of Euclidean functional space L2(X) based on the results of measurements of a finite set of its linear functionals, distorted by (random) error is solved. A priori data aren't assumed. Family of linear subspaces of the maximum (effective) dimension for which the projections of element f to them allow estimates with a given accuracy, is received. The effective rank ρ(δ) of the estimation problem is defined as the function equal to the maximum dimension of an orthogonal component Pf of the element f which can be estimated with a error, which is not surpassed the value δ. The example of restoration of a spectrum of radiation based on a finite set of experimental data is given.
-
Grid-cloud services simulation for NICA project, as a mean of the efficiency increasing of their development
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 635-642Views (last year): 4. Citations: 3 (RSCI).A new grid and cloud services simulation for NICA accelerator complex data storage and processing system are described. This system is focused on improving the efficiency of the grid-cloud systems development by using work quality indicators of some real system to design and predict its evolution. For these purpose the simulation program are combined with real monitoring system of the grid-cloud service through a special database. An example of the program usage to simulate a sufficiently general cloud structure, which can be used for more common purposes, is given.
-
FlowVision: Industrial computational fluid dynamics
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 5-20Views (last year): 30. Citations: 8 (RSCI).The work submits new release of the FlowVision software designed for automation of engineering calculations in computational fluid dynamics: FlowVision 3.09.05. The FlowVision software is used for solving different industrial problems. Its popularity is based on the capability to solve complex non-tradition problems involving different physical processes. The paradigm of complete automation of labor-intensive and time-taking processes like grid generation makes FlowVision attractive for many engineers. FlowVision is completely developer-independent software. It includes an advanced graphical interface, the system for specifying a computational project as well as the system for flow visualization on planes, on curvilinear surfaces and in volume by means of different methods: plots, color contours, iso-lines, iso-surfaces, vector fields. Besides that, FlowVision provides tools for calculation of integral characteristics on surfaces and in volumetric regions.
The software is based on the finite-volume approach to approximation of the partial differential equations describing fluid motion and accompanying physical processes. It provides explicit and implicit methods for time integration of these equations. The software includes automated generator of unstructured grid with capability of its local dynamic adaptation. The solver involves two-level parallelism which allows calculations on computers with distributed and shared memory (coexisting in the same hardware). FlowVision incorporates a wide spectrum of physical models: different turbulence models, models for mass transfer accounting for chemical reactions and radioactive decay, several combustion models, a dispersed phase model, an electro-hydrodynamic model, an original VOF model for tracking moving interfaces. It should be noted that turbulence can be simulated within URANS, LES, and ILES approaches. FlowVision simulates fluid motion with velocities corresponding to all possible flow regimes: from incompressible to hypersonic. This is achieved by using an original all-speed velocity-pressure split algorithm for integration of the Navier-Stokes equations.
FlowVision enables solving multi-physic problems with use of different modeling tools. For instance, one can simulate multi-phase flows with use of the VOF method, flows past bodies moving across a stationary grid (within Euler approach), flows in rotary machines with use of the technology of sliding grid. Besides that, the software solves fluid-structure interaction problems using the technology of two-way coupling of FlowVision with finite-element codes. Two examples of solving challenging problems in the FlowVision software are demonstrated in the given article. The first one is splashdown of a spacecraft after deceleration by means of jet engines. This problem is characterized by presence of moving bodies and contact surface between the air and the water in the computational domain. The supersonic jets interact with the air-water interphase. The second problem is simulation of the work of a human heart with artificial and natural valves designed on the basis of tomographic investigations with use of a finite-element model of the heart. This problem is characterized by two-way coupling between the “liquid” computational domain and the finite-element model of the hart muscles.
-
Computer studies of polynomial solutions for gyrostat dynamics
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 7-25Views (last year): 15.We study polynomial solutions of gyrostat motion equations under potential and gyroscopic forces applied and of gyrostat motion equations in magnetic field taking into account Barnett–London effect. Mathematically, either of the above mentioned problems is described by a system of non-linear ordinary differential equations whose right hand sides contain fifteen constant parameters. These parameters characterize the gyrostat mass distribution, as well as potential and non-potential forces acting on gyrostat. We consider polynomial solutions of Steklov–Kovalevski–Gorjachev and Doshkevich classes. The structure of invariant relations for polynomial solutions shows that, as a rule, on top of the fifteen parameters mentioned one should add no less than twenty five problem parameters. In the process of solving such a multi-parametric problem in this paper we (in addition to analytic approach) apply numeric methods based on CAS. We break our studies of polynomial solutions existence into two steps. During the first step, we estimate maximal degrees of polynomials considered and obtain a non-linear algebraic system for parameters of differential equations and polynomial solutions. In the second step (using the above CAS software) we study the solvability conditions of the system obtained and investigate the conditions of the constructed solutions to be real.
We construct two new polynomial solutions for Kirchhoff–Poisson. The first one is described by the following property: the projection squares of angular velocity on the non-baracentric axes are the fifth degree polynomials of the angular velocity vector component of the baracentric axis that is represented via hypereliptic function of time. The second solution is characterized by the following: the first component of velocity conditions is a second degree polynomial, the second component is a polynomial of the third degree, and the square of the third component is the sixth degree polynomial of the auxiliary variable that is an inversion of the elliptic Legendre integral.
The third new partial solution we construct for gyrostat motion equations in the magnetic field with Barnett–London effect. Its structure is the following: the first and the second components of the angular velocity vector are the second degree polynomials, and the square of the third component is a fourth degree polynomial of the auxiliary variable which is found via inversion of the elliptic Legendre integral of the third kind.
All the solutions constructed in this paper are new and do not have analogues in the fixed point dynamics of a rigid body.
-
Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.
-
Optimization of geometric analysis strategy in CAD-systems
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 825-840Computer-aided assembly planning for complex products is an important engineering and scientific problem. The assembly sequence and content of assembly operations largely depend on the mechanical structure and geometric properties of a product. An overview of geometric modeling methods that are used in modern computer-aided design systems is provided. Modeling geometric obstacles in assembly using collision detection, motion planning, and virtual reality is very computationally intensive. Combinatorial methods provide only weak necessary conditions for geometric reasoning. The important problem of minimizing the number of geometric tests during the synthesis of assembly operations and processes is considered. A formalization of this problem is based on a hypergraph model of the mechanical structure of the product. This model provides a correct mathematical description of coherent and sequential assembly operations. The key concept of the geometric situation is introduced. This is a configuration of product parts that requires analysis for freedom from obstacles and this analysis gives interpretable results. A mathematical description of geometric heredity during the assembly of complex products is proposed. Two axioms of heredity allow us to extend the results of testing one geometric situation to many other situations. The problem of minimizing the number of geometric tests is posed as a non-antagonistic game between decision maker and nature, in which it is required to color the vertices of an ordered set in two colors. The vertices represent geometric situations, and the color is a metaphor for the result of a collision-free test. The decision maker’s move is to select an uncolored vertex; nature’s answer is its color. The game requires you to color an ordered set in a minimum number of moves by decision maker. The project situation in which the decision maker makes a decision under risk conditions is discussed. A method for calculating the probabilities of coloring the vertices of an ordered set is proposed. The basic pure strategies of rational behavior in this game are described. An original synthetic criterion for making rational decisions under risk conditions has been developed. Two heuristics are proposed that can be used to color ordered sets of high cardinality and complex structure.
-
ARC Compute Element is becoming more popular in WLCG and EGI infrastructures, being used not only in the Grid context, but also as an interface to HPC and Cloud resources. It strongly relies on community contributions, which helps keeping up with the changes in the distributed computing landscape. Future ARC plans are closely linked to the needs of the LHC computing, whichever shape it may take. There are also numerous examples of ARC usage for smaller research communities through national computing infrastructure projects in different countries. As such, ARC is a viable solution for building uniform distributed computing infrastructures using a variety of resources.
-
Finite difference schemes for linear advection equation solving under generalized approximation condition
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 181-193Views (last year): 27.A set of implicit difference schemes on the five-pointwise stensil is under construction. The analysis of properties of difference schemes is carried out in a space of undetermined coefficients. The spaces were introduced for the first time by A. S. Kholodov. Usually for properties of difference schemes investigation the problem of the linear programming was constructed. The coefficient at the main term of a discrepancy was considered as the target function. The optimization task with inequalities type restrictions was considered for construction of the monotonic difference schemes. The limitation of such an approach becomes clear taking into account that approximation of the difference scheme is defined only on the classical (smooth) solutions of partial differential equations.
The functional which minimum will be found put in compliance to the difference scheme. The functional must be the linear on the difference schemes coefficients. It is possible that the functional depends on net function – the solution of a difference task or a grid projection of the differential problem solution. If the initial terms of the functional expansion in a Taylor series on grid parameters are equal to conditions of classical approximation, we will call that the functional will be the generalized condition of approximation. It is shown that such functionals exist. For the simple linear partial differential equation with constant coefficients construction of the functional is possible also for the generalized (non-smooth) solution of a differential problem.
Families of functionals both for smooth solutions of an initial differential problem and for the generalized solution are constructed. The new difference schemes based on the analysis of the functionals by linear programming methods are constructed. At the same time the research of couple of self-dual problems of the linear programming is used. The optimum monotonic difference scheme possessing the first order of approximation on the smooth solution of differential problem is found. The possibility of application of the new schemes for creation of hybrid difference methods of the raised approximation order on smooth solutions is discussed.
The example of numerical implementation of the simplest difference scheme with the generalized approximation is given.
-
A problem-modeling environment for the numerical solution of the Boltzmann equation on a cluster architecture for analyzing gas-kinetic processes in the interelectrode gap of thermal emission converters
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 219-232Views (last year): 24.This paper is devoted to the application of the method of numerical solution of the Boltzmann equation for the solution of the problem of modeling the behavior of radionuclides in the cavity of the interelectric gap of a multielement electrogenerating channel. The analysis of gas-kinetic processes of thermionic converters is important for proving the design of the power-generating channel. The paper reviews two constructive schemes of the channel: with one- and two-way withdrawal of gaseous fission products into a vacuum-cesium system. The analysis uses a two-dimensional transport equation of the second-order accuracy for the solution of the left-hand side and the projection method for solving the right-hand side — the collision integral. In the course of the work, a software package was implemented that makes it possible to calculate on the cluster architecture by using the algorithm of parallelizing the left-hand side of the equation; the paper contains the results of the analysis of the dependence of the calculation efficiency on the number of parallel nodes. The paper contains calculations of data on the distribution of pressures of gaseous fission products in the gap cavity, calculations use various sets of initial pressures and flows; the dependency of the radionuclide pressure in the collector region was determined as a function of cesium pressures at the ends of the gap. The tests in the loop channel of a nuclear reactor confirm the obtained results.
-
Analysis of mechanical structures of complex technical systems
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 903-916The work is devoted to the structural analysis of complex technical systems. Mechanical structures are considered, the properties of which affect the behavior of products during assembly, repair and operation. The main source of data on parts and mechanical connections between them is a hypergraph. This model formalizes the multidimensional basing relation. The hypergraph correctly describes the connectivity and mutual coordination of parts, which is achieved during the assembly of the product. When developing complex products in CAD systems, an engineer often makes serious design mistakes: overbasing of parts and non-sequential assembly operations. Effective ways of identifying these structural defects have been proposed. It is shown that the property of independent assembly can be represented as a closure operator whose domain is the boolean of the set of product parts. The images of this operator are connected and coordinated subsets of parts that can be assembled independently. A lattice model is described, which is the state space of the product during assembly, disassembly and decomposition into assembly units. The lattice model serves as a source of various structural information about the project. Numerical estimates of the cardinality of the set of admissible alternatives in the problems of choosing an assembly sequence and decomposition into assembly units are proposed. For many technical operations (for example, control, testing, etc.), it is necessary to mount all the operand parts in one assembly unit. A simple formalization of the technical conditions requiring the inclusion (exclusion) of parts in the assembly unit (from the assembly unit) has been developed. A theorem that gives an mathematical description of product decomposition into assembly units in exact lattice terms is given. A method for numerical evaluation of the robustness of the mechanical structure of a complex technical system is proposed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"