Результаты поиска по 'regulatory mechanisms':
Найдено статей: 4
  1. Terekhin A.T., Budilova E.V., Karpenko M.P., Kachalova L.M., Chmyhova E.V.
    Lyapunov function as a tool for the study of cognitive and regulatory processes in organism
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 449-456

    Cognitive and regulatory processes in organism are ensured by the functioning of several different network systems — neural, endocrine, immune, and gene ones. These systems are, however, closely related and form a single integrated neurogenohumoral cognitive-regulatory dynamic system of organism. A review of publications is given which shows that it is possible to associate with this dynamic system a corresponding Lyapunov function (energy function, potential function) and that analyzing this function allows, due to its geometrical insight, to easily discover a set of general properties of cognitive and regulatory functioning of organism.

    Views (last year): 4. Citations: 5 (RSCI).
  2. Golov A.V., Simakov S.S.
    Mathematical model of respiratory regulation during hypoxia and hypercapnia
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 297-310

    Transport of respiratory gases by respiratory and circulatory systems is one of the most important processes associated with living conditions of the human body. Significant and/or long-term deviations of oxygen and carbon dioxide concentrations from the normal values in blood can be a reason of significant pathological changes with irreversible consequences: lack of oxygen (hypoxia and ischemic events), the change in the acidbase balance of blood (acidosis or alkalosis), and others. In the context of a changing external environment and internal conditions of the body the action of its regulatory systems aimed at maintaining homeostasis. One of the major mechanisms for maintaining concentrations (partial pressures) of oxygen and carbon dioxide in the blood at a normal level is the regulation of minute ventilation, respiratory rate and depth of respiration, which is caused by the activity of the central and peripheral regulators.

    In this paper we propose a mathematical model of the regulation of pulmonary ventilation parameter. The model is used to calculate the minute ventilation adaptation during hypoxia and hypercapnia. The model is developed using a single-component model of the lungs, and biochemical equilibrium conditions of oxygen and carbon dioxide in the blood and the alveolar lung volume. A comparison with laboratory data is performed during hypoxia and hypercapnia. Analysis of the results shows that the model reproduces the dynamics of minute ventilation during hypercapnia with sufficient accuracy. Another result is that more accurate model of regulation of minute ventilation during hypoxia should be developed. The factors preventing from satisfactory accuracy are analysed in the final section.

    Respiratory function is one of the main limiting factors of the organism during intense physical activities. Thus, it is important characteristic of high performance sport and extreme physical activity conditions. Therefore, the results of this study have significant application value in the field of mathematical modeling in sport. The considered conditions of hypoxia and hypercapnia are partly reproduce training at high altitude and at hypoxia conditions. The purpose of these conditions is to increase the level of hemoglobin in the blood of highly qualified athletes. These conditions are the only admitted by sport committees.

    Views (last year): 16.
  3. Fedorov V.A., Kholina E.G., Kovalenko I.B.
    Molecular dynamics of tubulin protofilaments and the effect of taxol on their bending deformation
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 503-512

    Despite the widespread use of cancer chemotherapy drugs, the molecular mechanisms of action of many of them remain unclear. Some of these drugs, such as taxol, are known to affect the dynamics of microtubule assembly and stop the process of cell division in prophase-prometaphase. Recently, new spatial structures of microtubules and individual tubulin oligomers have emerged associated with various regulatory proteins and cancer chemotherapy drugs. However, knowledge of the spatial structure in itself does not provide information about the mechanism of action of drugs.

    In this work, we applied the molecular dynamics method to study the behavior of taxol-bound tubulin oligomers and used our previously developed method for analyzing the conformation of tubulin protofilaments, based on the calculation of modified Euler angles. Recent structures of microtubule fragments have demonstrated that tubulin protofilaments bend not in the radial direction, as many researchers assume, but at an angle of approximately 45◦ from the radial direction. However, in the presence of taxol, the bending direction shifts closer to the radial direction. There was no significant difference between the mean bending and torsion angles of the studied tubulin structures when bound to the various natural regulatory ligands, guanosine triphosphate and guanosine diphosphate. The intra-dimer bending angle was found to be greater than the interdimer bending angle in all analyzed trajectories. This indicates that the bulk of the deformation energy is stored within the dimeric tubulin subunits and not between them. Analysis of the structures of the latest generation of tubulins indicated that the presence of taxol in the tubulin beta subunit pocket allosterically reduces the torsional rigidity of the tubulin oligomer, which could explain the underlying mechanism of taxol’s effect on microtubule dynamics. Indeed, a decrease in torsional rigidity makes it possible to maintain lateral connections between protofilaments, and therefore should lead to the stabilization of microtubules, which is what is observed in experiments. The results of the work shed light on the phenomenon of dynamic instability of microtubules and allow to come closer to understanding the molecular mechanisms of cell division.

  4. Guleenkova V.D., Ershova D.M., Tsaturyan A.K., Koubassova N.A.
    Molecular dynamics study of the effect of mutations in the tropomyosin molecule on the properties of thin filaments of the heart muscle
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 513-524

    Muscle contraction is controlled by Ca2+ ions via regulatory proteins, troponin and tropomyosin, associated with thin actin filaments in sarcomeres. Depending on the Ca2+ concentration, the thin filament rearranges so that tropomyosin moves along its surface, opening or closing access to actin for the motor domains of myosin molecules, and causing contraction or relaxation, respectively. Numerous point amino acid substitutions in tropomyosin are known, leading to genetic pathologies — myo- and cardiomyopathies caused by changes in the structural and functional properties of the thin filament. The results of molecular dynamics modeling of a fragment of a thin filament of cardiac muscle sarcomeres formed by fibrillar actin and wildtype tropomyosin or with amino acid substitutions: the double stabilizing substitution D137L/G126R and the cardiomyopathic substitution S215L are presented. For numerical calculations, we used a new model of a thin filament fragment containing 26 actin monomers and 4 tropomyosin dimers, with a refined structure of the region of overlap of neighboring tropomyosin molecules in each of the two tropomyosin strands. The simulation results showed that tropomyosin significantly increases the bending stiffness of the thin filament, as previously found experimentally. The double stabilizing replacement D137L/G126R leads to a further increase in this rigidity, and the replacement S215L, on the contrary, leads to its decrease, which also corresponds to experimental data. At the same time, these substitutions have different effects on the angular mobility of the actin helix and only slightly modulate the angular mobility of tropomyosin cables relative to the actin helix and the population of hydrogen bonds between negatively charged tropomyosin residues and positively charged actin residues. The results of the verification of the new model demonstrate that its quality is sufficient for the numerical study of the effect of single amino acid substitutions on the structure and dynamics of thin filaments and study the effects leading to dysregulation of muscle contraction. This model can be used as a useful tool for elucidating the molecular mechanisms of some genetic diseases and assessing the pathogenicity of newly discovered genetic variants.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"