All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
Analysis of stochastic attractors for time-delayed quadratic discrete model of population dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 145-157Views (last year): 3. Citations: 1 (RSCI).We consider a time-delayed quadratic discrete model of population dynamics under the influence of random perturbations. Analysis of stochastic attractors of the model is performed using the methods of direct numerical simulation and the stochastic sensitivity function technique. A deformation of the probability distribution of random states around the stable equilibria and cycles is studied parametrically. The phenomenon of noise-induced transitions in the zone of discrete cycles is demonstrated.
-
Analysis of noise-induced bursting in two-dimensional Hindmarsh–Rose model
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 605-619Views (last year): 1.We study the stochastic dynamics of the two-dimensional Hindmarsh–Rose model in the parametrical zone of coexisting stable equilibria and limit cycles. The phenomenon of noise-induced transitions between the attractors is investigated. Under the random disturbances, equilibrium and periodic regimes combine in bursting regime: the system demonstrates an alternation of small fluctuations near the equilibrium with high amplitude oscillations. This effect is analysed using the stochastic sensitivity function technique and a method of estimation of critical values for noise intensity is proposed.
-
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Views (last year): 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
-
Analysis of the identifiability of the mathematical model of propane pyrolysis
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.
The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).
To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.
The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.
-
Effects of the heart contractility and its vascular load on the heart rate in athlets
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 323-329Views (last year): 5. Citations: 1 (RSCI).Heart rate (HR) is the most affordable indicator for measuring. In order to control the individual response to physical exercises of different load types heart rate is measured when the athletes perform different types of muscular work (strength machines, various types of training and competitive exercises). The magnitude of heart rate and its dynamics during muscular work and recovery can be objectively judged on the functional status of the cardiovascular system of an athlete, the level of its individual physical performance, as well as an adaptive response to a particular exercise. However, the heart rate is not an independent determinant of the physical condition of an athlete. HR size is formed by the interaction of the basic physiological mechanisms underlying cardiac hemodynamic ejection mode. Heart rate depends on one hand, on contractility of the heart, the venous return, the volumes of the atria and ventricles of the heart and from vascular heart load, the main components of which are elastic and peripheral resistance of the arterial system on the other hand. The values of arterial system vascular resistances depend on the power of muscular work and its duration. HR sensitivity to changes in heart load and vascular contraction was determined in athletes by pair regression analysis simultaneously recorded heart rate data, and peripheral $(R)$ and elastic $(E_a)$ resistance (heart vascular load), and the power $(W)$ of heartbeats (cardiac contractility). The coefficients of sensitivity and pair correlation between heart rate indicators and vascular load and contractility of left ventricle of the heart were determined in athletes at rest and during the muscular work on the cycle ergometer. It is shown that increase in both ergometer power load and heart rate is accompanied by the increase of correlation coefficients and coefficients of the heart rate sensitivity to $R$, $E_a$ and $W$.
-
Microtubule protofilament bending characterization
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 435-443This work is devoted to the analysis of conformational changes in tubulin dimers and tetramers, in particular, the assessment of the bending of microtubule protofilaments. Three recently exploited approaches for estimating the bend of tubulin protofilaments are reviewed: (1) measurement of the angle between the vector passing through the H7 helices in $\alpha$ and $\beta$ tubulin monomers in the straight structure and the same vector in the curved structure of tubulin; (2) measurement of the angle between the vector, connecting the centers of mass of the subunit and the associated GTP nucleotide, and the vector, connecting the centers of mass of the same nucleotide and the adjacent tubulin subunit; (3) measurement of the three rotation angles of the bent tubulin subunit relative to the straight subunit. Quantitative estimates of the angles calculated at the intra- and inter-dimer interfaces of tubulin in published crystal structures, calculated in accordance with the three metrics, are presented. Intra-dimer angles of tubulin in one structure, measured by the method (3), as well as measurements by this method of the intra-dimer angles in different structures, were more similar, which indicates a lower sensitivity of the method to local changes in tubulin conformation and characterizes the method as more robust. Measuring the angle of curvature between H7-helices (method 1) produces somewhat underestimated values of the curvature per dimer. Method (2), while at first glance generating the bending angle values, consistent the with estimates of curved protofilaments from cryoelectron microscopy, significantly overestimates the angles in the straight structures. For the structures of tubulin tetramers in complex with the stathmin protein, the bending angles calculated with all three metrics varied quite significantly for the first and second dimers (up to 20% or more), which indicates the sensitivity of all metrics to slight variations in the conformation of tubulin dimers within these complexes. A detailed description of the procedures for measuring the bending of tubulin protofilaments, as well as identifying the advantages and disadvantages of various metrics, will increase the reproducibility and clarity of the analysis of tubulin structures in the future, as well as it will hopefully make it easier to compare the results obtained by various scientific groups.
-
Assessing the impact of deposit benchmark interest rate on banking loan dynamics
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 1023-1032Deposit benchmark interest rates are a policy implemented by banking regulators to calculate the interest rates offered to depositors, maintaining equitable and competitive rates within the financial industry. It functions as a benchmark for determining the pricing of different banking products, expenses, and financial choices. The benchmark rate will have a direct impact on the amount of money deposited, which in turn will determine the amount of money available for lending.We are motivated to analyze the influence of deposit benchmark interest rates on the dynamics of banking loans. This study examines the issue using a difference equation of banking loans. In this process, the decision on the loan amount in the next period is influenced by both the present loan volume and the information on its marginal profit. An analysis is made of the loan equilibrium point and its stability. We also analyze the bifurcations that arise in the model. To ensure a stable banking loan, it is necessary to set the benchmark rate higher than the flip value and lower than the transcritical bifurcation values. The confirmation of this result is supported by the bifurcation diagram and its associated Lyapunov exponent. Insufficient deposit benchmark interest rates might lead to chaotic dynamics in banking lending. Additionally, a bifurcation diagram with two parameters is also shown. We do numerical sensitivity analysis by examining contour plots of the stability requirements, which vary with the deposit benchmark interest rate and other parameters. In addition, we examine a nonstandard difference approach for the previous model, assess its stability, and make a comparison with the standard model. The outcome of our study can provide valuable insights to the banking regulator in making informed decisions regarding deposit benchmark interest rates, taking into account several other banking factors.
-
Features of social interactions: the basic model
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1673-1693The paper considers the basic model of competitive interactions and its use for the analysis and description of social processes. The peculiarity of the model is that it describes the interaction of several competing actors, while actors can vary the strategy of their actions, in particular, form coalitions to jointly counter a common enemy. As a result of modeling, various modes of competitive interaction were identified, their classification was conducted, and their features were described. In the course of the study, the attention is paid to the so-called “rough” (according to A.A. Andronov) cases of the implementation of competitive interaction, which until now have rarely been considered in the scientific literature, but are quite common in real life. Using a basic mathematical model, the conditions for the implementation of various modes of competitive interactions are considered, the conditions for the transition from one mode to another are determined, examples of the implementation of these modes in the economy, social and political life are given. It is shown that with a relatively low level of competition, which is non-antagonistic in nature, competition can lead to an increase in the activity of interacting actors and to overall economic growth. Moreover, in the presence of expanding resource opportunities (as long as such opportunities remain), this growth may have a hyperbolic character. With a decrease in resource capabilities and increased competition, there is a transition to an oscillatory mode, when weaker actors unite to jointly counteract stronger ones. With a further decrease in resource opportunities and increased competition, there is a transition to the formation of stable hierarchical structures. At the same time, the model shows that at a certain moment there is a loss of stability, the system becomes “rough” according to A.A. Andronov and sensitive to fluctuations in parameter changes. As a result, the existing hierarchies may collapse and be replaced by new ones. With a further increase in the intensity of competition, the actor-leader completely suppresses his opponents and establishes monopolism. Examples from economic, social, and political life are given, illustrating the patterns identified on the basis of modeling using the basic model of competition. The obtained results can be used in the analysis, modeling and forecasting of socioeconomic and political processes.
-
Using extended ODE systems to investigate the mathematical model of the blood coagulation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 931-951Many properties of ordinary differential equations systems solutions are determined by the properties of the equations in variations. An ODE system, which includes both the original nonlinear system and the equations in variations, will be called an extended system further. When studying the properties of the Cauchy problem for the systems of ordinary differential equations, the transition to extended systems allows one to study many subtle properties of solutions. For example, the transition to the extended system allows one to increase the order of approximation for numerical methods, gives the approaches to constructing a sensitivity function without using numerical differentiation procedures, allows to use methods of increased convergence order for the inverse problem solution. Authors used the Broyden method belonging to the class of quasi-Newtonian methods. The Rosenbroke method with complex coefficients was used to solve the stiff systems of the ordinary differential equations. In our case, it is equivalent to the second order approximation method for the extended system.
As an example of the proposed approach, several related mathematical models of the blood coagulation process were considered. Based on the analysis of the numerical calculations results, the conclusion was drawn that it is necessary to include a description of the factor XI positive feedback loop in the model equations system. Estimates of some reaction constants based on the numerical inverse problem solution were given.
Effect of factor V release on platelet activation was considered. The modification of the mathematical model allowed to achieve quantitative correspondence in the dynamics of the thrombin production with experimental data for an artificial system. Based on the sensitivity analysis, the hypothesis tested that there is no influence of the lipid membrane composition (the number of sites for various factors of the clotting system, except for thrombin sites) on the dynamics of the process.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"