All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1207-1221Photosynthetic apparatus of a plant cell consists of multiple photosynthetic electron transport chains (ETC). Each ETC is capable of capturing and utilizing light quanta, that drive electron transport along the chain. Light assimilation efficiency depends on the plant’s current physiological state. The energy of the part of quanta that cannot be utilized, dissipates into heat, or is emitted as fluorescence. Under high light conditions fluorescence levels gradually rise to the maximum level. The curve describing that rise is called fluorescence rise (FR). It has a complex shape and that shape changes depending on the photosynthetic apparatus state. This gives one the opportunity to investigate that state only using the non invasive measuring of the FR.
When measuring fluorescence in experimental conditions, we get a response from millions of photosynthetic units at a time. In order to reproduce the probabilistic nature of the processes in a photosynthetic ETC, we created a Monte Carlo model of this chain. This model describes an ETC as a sequence of electron carriers in a thylakoid membrane, connected with each other. Those carriers have certain probabilities of capturing light photons, transferring excited states, or reducing each other, depending on the current ETC state. The events that take place in each of the model photosynthetic ETCs are registered, accumulated and used to create fluorescence rise and electron carrier redox states accumulation kinetics. This paper describes the model structure, the principles of its operation and the relations between certain model parameters and the resulting kinetic curves shape. Model curves include photosystem II reaction center fluorescence rise and photosystem I reaction center redox state change kinetics under different conditions.
-
Spatio-temporal models of ICT diffusion
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1695-1712The article proposes a space-time approach to modeling the diffusion of information and communication technologies based on the Fisher –Kolmogorov– Petrovsky – Piskunov equation, in which the diffusion kinetics is described by the Bass model, which is widely used to model the diffusion of innovations in the market. For this equation, its equilibrium positions are studied, and based on the singular perturbation theory, was obtained an approximate solution in the form of a traveling wave, i. e. a solution that propagates at a constant speed while maintaining its shape in space. The wave speed shows how much the “spatial” characteristic, which determines the given level of technology dissemination, changes in a single time interval. This speed is significantly higher than the speed at which propagation occurs due to diffusion. By constructing such an autowave solution, it becomes possible to estimate the time required for the subject of research to achieve the current indicator of the leader.
The obtained approximate solution was further applied to assess the factors affecting the rate of dissemination of information and communication technologies in the federal districts of the Russian Federation. Various socio-economic indicators were considered as “spatial” variables for the diffusion of mobile communications among the population. Growth poles in which innovation occurs are usually characterized by the highest values of “spatial” variables. For Russia, Moscow is such a growth pole; therefore, indicators of federal districts related to Moscow’s indicators were considered as factor indicators. The best approximation to the initial data was obtained for the ratio of the share of R&D costs in GRP to the indicator of Moscow, average for the period 2000–2009. It was found that for the Ural Federal District at the initial stage of the spread of mobile communications, the lag behind the capital was less than one year, for the Central Federal District, the Northwestern Federal District — 1.4 years, for the Volga Federal District, the Siberian Federal District, the Southern Federal District and the Far Eastern Federal District — less than two years, in the North Caucasian Federal District — a little more 2 years. In addition, estimates of the delay time for the spread of digital technologies (intranet, extranet, etc.) used by organizations of the federal districts of the Russian Federation from Moscow indicators were obtained.
-
Exact calculation of a posteriori probability distribution with distributed computing systems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 539-542Views (last year): 3.We'd like to present a specific grid infrastructure and web application development and deployment. The purpose of infrastructure and web application is to solve particular geophysical problems that require heavy computational resources. Here we cover technology overview and connector framework internals. The connector framework links problem-specific routines with middleware in a manner that developer of application doesn't have to be aware of any particular grid software. That is, the web application built with this framework acts as an interface between the user 's web browser and Grid's (often very) own middleware.
Our distributed computing system is built around Gridway metascheduler. The metascheduler is connected to TORQUE resource managers of virtual compute nodes that are being run atop of compute cluster utilizing the virtualization technology. Such approach offers several notable features that are unavailable to bare-metal compute clusters.
The first application we've integrated with our framework is seismic anisotropic parameters determination by inversion of SKS and converted phases. We've used probabilistic approach to inverse problem solution based on a posteriory probability distribution function (APDF) formalism. To get the exact solution of the problem we have to compute the values of multidimensional function. Within our implementation we used brute-force APDF calculation on rectangular grid across parameter space.
The result of computation is stored in relational DBMS and then represented in familiar human-readable form. Application provides several instruments to allow analysis of function's shape by computational results: maximum value distribution, 2D cross-sections of APDF, 2D marginals and a few other tools. During the tests we've run the application against both synthetic and observed data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"