Результаты поиска по 'stable dynamics model':
Найдено статей: 40
  1. Sidorenko D.A., Utkin P.S.
    Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766

    In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.

    The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.

  2. Il’ichev V.G., Dashkevich L.V.
    Optimal fishing and evolution of fish migration routes
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 879-893

    A new discrete ecological-evolutionary mathematical model is presented, in which the search mechanisms for evolutionarily stable migration routes of fish populations are implemented. The proposed adaptive designs have a small dimension, and therefore have high speed. This allows carrying out calculations on long-term perspective for an acceptable machine time. Both geometric approaches of nonlinear analysis and computer “asymptotic” methods were used in the study of stability. The migration dynamics of the fish population is described by a certain Markov matrix, which can change during evolution. The “basis” matrices are selected in the family of Markov matrices (of fixed dimension), which are used to generate migration routes of mutant. A promising direction of the evolution of the spatial behavior of fish is revealed for a given fishery and food supply, as a result of competition of the initial population with mutants. This model was applied to solve the problem of optimal catch for the long term, provided that the reservoir is divided into two parts, each of which has its own owner. Dynamic programming is used, based on the construction of the Bellman function, when solving optimization problems. A paradoxical strategy of “luring” was discovered, when one of the participants in the fishery temporarily reduces the catch in its water area. In this case, the migrating fish spends more time in this area (on condition of equal food supply). This route is evolutionarily fixes and does not change even after the resumption of fishing in the area. The second participant in the fishery can restore the status quo by applying “luring” to its part of the water area. Endless sequence of “luring” arises as a kind of game “giveaway”. A new effective concept has been introduced — the internal price of the fish population, depending on the zone of the reservoir. In fact, these prices are Bellman's private derivatives, and can be used as a tax on caught fish. In this case, the problem of long-term fishing is reduced to solving the problem of one-year optimization.

  3. Frisman E.Y., Kulakov M.P.
    From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109

    Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.

  4. Zlenko D.V., Krasilnikov P.M.
    Permeability of lipid membranes. A molecular dynamic study
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 423-436

    A correct model of lipid molecule (distearoylphosphatidylcholine, DSPC) and lipid membrane in water was constructed. Model lipid membrane is stable and has a reliable energy distribution among degrees of freedom. Also after equilibration model system has spatial parameters very similar to those of real DSPC membrane in liquid-crystalline phase. This model was used for studying of lipid membrane permeability to oxygen and water molecules and sodium ion. We obtained the values for transmembrane mobility and diffusion coefficients profiles, which we used for effective permeability coefficients calculation. We found lipid membranes to have significant diffusional resistance to penetration not only by charged particles, such as ions, but also by nonpolar molecules, such as oxygen molecule. We propose theoretical approach for calculation of particle flow across a membrane, as well as methods for estimation of distribution coefficients between bilayer and water phase.

    Views (last year): 20. Citations: 2 (RSCI).
  5. Bashkirtseva I.A., Ekaterinchuk E.D., Ryazanova T.V., Sysolyatina A.A.
    Mathematical modeling of stochastic equilibria and business cycles of Goodwin model
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 107-118

    The Goodwin dynamical model under the random external disturbances is considered. A full parametrical analysis for equlibria and cycles of deterministic model is developed. We study probabilistic properties of stochastic attractors using stochastic sensitivity functions technique and numerical methods. A phenomenon of the generation of stochastic business cycles in the zones of stable equilibria is discussed.

    Views (last year): 5. Citations: 4 (RSCI).
  6. Ryashko L.B., Slepukhina E.S.
    Analysis of additive and parametric noise effects on Morris – Lecar neuron model
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468

    This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.

    Views (last year): 11.
  7. Bratsun D.A., Lorgov E.S., Poluyanov A.O.
    Repressilator with time-delayed gene expression. Part I. Deterministic description
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259

    The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.

    Views (last year): 30.
  8. Malygina N.V., Surkov P.G.
    On the modeling of water obstacles overcoming by Rangifer tarandus L
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 895-910

    Seasonal migrations and herd instinct are traditionally recognized as wild reindeer (Rangifer tarandus L.) species-specific behavioral signs. These animals are forced to overcome water obstacles during the migrations. Behaviour peculiarities are considered as the result of the selection process, which has chosen among the sets of strategies, as the only evolutionarily stable one, determining the reproduction and biological survival of wild reindeer as a species. Natural processes in the Taimyr population wild reindeer are currently occurring against the background of an increase in the influence of negative factors due to the escalation of the industrial development of the Arctic. That is why the need to identify the ethological features of these animals completely arose. This paper presents the results of applying the classical methods of the theory of optimal control and differential games to the wild reindeer study of the migration patterns in overcoming water barriers, including major rivers. Based on these animals’ ethological features and behavior forms, the herd is presented as a controlled dynamic system, which presents also two classes of individuals: the leader and the rest of the herd, for which their models, describing the trajectories of their movement, are constructed. The models are based on hypotheses, which are the mathematical formalization of some animal behavior patterns. This approach made it possible to find the trajectory of the important one using the methods of the optimal control theory, and in constructing the trajectories of other individuals, apply the principle of control with a guide. Approbation of the obtained results, which can be used in the formation of a common “platform” for the adaptive behavior models systematic construction and as a reserve for the cognitive evolution models fundamental development, is numerically carried out using a model example with observational data on the Werchnyaya Taimyra River.

  9. Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  10. Nguyen B.H., Ha D.T., Tsybulin V.G.
    Multistability for system of three competing species
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1325-1342

    The study of the Volterra model describing the competition of three types is carried out. The corresponding system of first-order differential equations with a quadratic right-hand side, after a change of variables, reduces to a system with eight parameters. Two of them characterize the growth rates of populations; for the first species, this parameter is taken equal to one. The remaining six coefficients define the species interaction matrix. Previously, in the analytical study of the so-called symmetric model [May, Leonard, 1975] and the asymmetric model [Chi, Wu, Hsu, 1998] with growth factors equal to unity, relations were established for the interaction coefficients, under which the system has a one-parameter family of limit cycles. In this paper, we carried out a numerical-analytical study of the complete system based on a cosymmetric approach, which made it possible to determine the ratios for the parameters that correspond to families of equilibria. Various variants of oneparameter families are obtained and it is shown that they can consist of both stable and unstable equilibria. In the case of an interaction matrix with unit coefficients, a multicosymmetry of the system and a two-parameter family of equilibria are found that exist for any growth coefficients. For various interaction coefficients, the values of growth parameters are found at which periodic regimes are realized. Their belonging to the family of limit cycles is confirmed by the calculation of multipliers. In a wide range of values that violate the relationships under which the existence of cycles is ensured, a slow oscillatory establishment, typical of the destruction of cosymmetry, is obtained. Examples are given where a fixed value of one growth parameter corresponds to two values of another parameter, so that there are different families of periodic regimes. Thus, the variability of scenarios for the development of a three-species system has been established.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"