All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Mathematical modeling of bending of a circular plate using $S$-splines
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 977-988Views (last year): 4.This article is dedicated to the use of higher degree $S$-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. $S$-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class $C^4$ 7th degree $S$-splines.
-
Neumann's method to solve boundary problems of elastic thin shells
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1143-1153Views (last year): 3.This paper studies possibilities to use Neumann's method to solve boundary problems of elastic thin shells. Variational statement of statical problems for shells allows examining the problems within the space of distributions. Convergence of the Neumann's method is proved for the shells with holes when the boundary of the domain is not completely fixed. Numerical implementation of the Neumann's method normally takes a lot of time before some reliable results can be achieved. This paper suggests a way to improve convergence of the process and allows for parallel computing and checkout procedure during calculations.
-
Buckling problems of thin elastic shells
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 775-787Views (last year): 23.The article covers several mathematical problems relating to elastic stability of thin shells in view of inconsistencies that have been recently identified between the experimental data and the predictions based on the shallow- shell theory. It is highlighted that the contradictions were caused by new algorithms that enabled updating the values of the so called “low critical stresses” calculated in the 20th century and adopted as a buckling criterion for thin shallow shells by technical standards. The new calculations often find the low critical stress close to zero. Therefore, the low critical stress cannot be used as a safety factor for the buckling analysis of the thinwalled structure, and the equations of the shallow-shell theory need to be replaced with other differential equations. The new theory also requires a buckling criterion ensuring the match between calculations and experimental data.
The article demonstrates that the contradiction with the new experiments can be resolved within the dynamic nonlinear three-dimensional theory of elasticity. The stress when bifurcation of dynamic modes occurs shall be taken as a buckling criterion. The nonlinear form of original equations causes solitary (solitonic) waves that match non-smooth displacements (patterns, dents) of the shells. It is essential that the solitons make an impact at all stages of loading and significantly increase closer to bifurcation. The solitonic solutions are illustrated based on the thin cylindrical momentless shell when its three-dimensional volume is simulated with twodimensional surface of the set thickness. It is noted that the pattern-generating waves can be detected (and their amplitudes can by identified) with acoustic or electromagnetic devices.
Thus, it is technically possible to reduce the risk of failure of the thin shells by monitoring the shape of the surface with acoustic devices. The article concludes with a setting of the mathematical problems requiring the solution for the reliable numerical assessment of the buckling criterion for thin elastic shells.
-
Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 79-92The paper deals with the mathematical model formulation for studying the nonlinear hydro-elastic response of the narrow channel wall supported by a spring with cubic nonlinearity and interacting with a pulsating viscous liquid filling the channel. In contrast to the known approaches, within the framework of the proposed mathematical model, the inertial and dissipative properties of the viscous incompressible liquid and the restoring force nonlinearity of the supporting spring were simultaneously taken into account. The mathematical model was an equations system for the coupled plane hydroelasticity problem, including the motion equations of a viscous incompressible liquid, with the corresponding boundary conditions, and the channel wall motion equation as a single-degree-of-freedom model with a cubic nonlinear restoring force. Initially, the viscous liquid dynamics was investigated within the framework of the hydrodynamic lubrication theory, i. e. without taking into account the liquid motion inertia. At the next stage, the iteration method was used to take into account the motion inertia of the viscous liquid. The distribution laws of the hydrodynamic parameters for the viscous liquid in the channel were found which made it possible to determine its reaction acting on the channel wall. As a result, it was shown that the original hydroelasticity problem is reduced to a single nonlinear equation that coincides with the Duffing equation. In this equation, the damping coefficient is determined by the liquid physical properties and the channel geometric dimensions, and taking into account the liquid motion inertia lead to the appearance of an added mass. The nonlinear equation study for hydroelastic oscillations was carried out by the harmonic balance method for the main frequency of viscous liquid pulsations. As a result, the primary steady-state hydroelastic response for the channel wall supported by a spring with softening or hardening cubic nonlinearity was found. Numerical modeling of the channel wall hydroelastic response showed the possibility of a jumping change in the amplitudes of channel wall oscillations, and also made it possible to assess the effect of the liquid motion inertia on the frequency range in which these amplitude jumps are observed.
-
Buckling prediction for shallow convex shells based on the analysis of nonlinear oscillations
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1189-1205Buckling problems of thin elastic shells have become relevant again because of the discrepancies between the standards in many countries on how to estimate loads causing buckling of shallow shells and the results of the experiments on thinwalled aviation structures made of high-strength alloys. The main contradiction is as follows: the ultimate internal stresses at shell buckling (collapsing) turn out to be lower than the ones predicted by the adopted design theory used in the USA and European standards. The current regulations are based on the static theory of shallow shells that was put forward in the 1930s: within the nonlinear theory of elasticity for thin-walled structures there are stable solutions that significantly differ from the forms of equilibrium typical to small initial loads. The minimum load (the lowest critical load) when there is an alternative form of equilibrium was used as a maximum permissible one. In the 1970s it was recognized that this approach is unacceptable for complex loadings. Such cases were not practically relevant in the past while now they occur with thinner structures used under complex conditions. Therefore, the initial theory on bearing capacity assessments needs to be revised. The recent mathematical results that proved asymptotic proximity of the estimates based on two analyses (the three-dimensional dynamic theory of elasticity and the dynamic theory of shallow convex shells) could be used as a theory basis. This paper starts with the setting of the dynamic theory of shallow shells that comes down to one resolving integrodifferential equation (once the special Green function is constructed). It is shown that the obtained nonlinear equation allows for separation of variables and has numerous time-period solutions that meet the Duffing equation with “a soft spring”. This equation has been thoroughly studied; its numerical analysis enables finding an amplitude and an oscillation period depending on the properties of the Green function. If the shell is oscillated with the trial time-harmonic load, the movement of the surface points could be measured at the maximum amplitude. The study proposes an experimental set-up where resonance oscillations are generated with the trial load normal to the surface. The experimental measurements of the shell movements, the amplitude and the oscillation period make it possible to estimate the safety factor of the structure bearing capacity with non-destructive methods under operating conditions.
-
The approximate model of plane static problems of the nonlinear elasticity theory
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 889-896Views (last year): 4. Citations: 2 (RSCI).This article is dedicated to the construction of the approximate mathematical model of the nonlinear elasticity theory for plane strain state. The third order effects method applied to symbolic computing. There three boundary value problems for the first, the second and the third order effects has been obtained within this method, which gets ability to use well-elaborated methods of the linear elasticity theory for the solution of specific problems. This method can be applied for analytical solving of plane problems of nonlinear elasticity theory of stress concentration around holes in mathematical package Maple. Considered example of the triangular hole. The influence of external loads on the stress concentration factor.
-
Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 667-678Views (last year): 18.We consider an application of the Message Passing Interface (MPI) technology for parallelization of the program code which solves equation of the linear elasticity theory. The solution of this equation describes the propagation of elastic waves in demormable rigid bodies. The solution of such direct problem of seismic wave propagation is of interest in seismics and geophysics. Our implementation of solver uses grid-characteristic method to make simulations. We consider technique to reduce time of communication between MPI processes during the simulation. This is important when it is necessary to conduct modeling in complex problem formulations, and still maintain the high level of parallelism effectiveness, even when thousands of processes are used. A solution of the problem of effective communication is extremely important when several computational grids with arbirtrary geometry of contacts between them are used in the calculation. The complexity of this task increases if an independent distribution of the grid nodes between processes is allowed. In this paper, a generalized approach is developed for processing contact conditions in terms of nodes reinterpolation from a given section of one grid to a certain area of the second grid. An efficient way of parallelization and establishing effective interprocess communications is proposed. For provided example problems we provide wave fileds and seismograms for both 2D and 3D formulations. It is shown that the algorithm can be realized both on Cartesian and on structured (curvilinear) computational grids. The considered statements demonstrate the possibility of carrying out calculations taking into account the surface topographies and curvilinear geometry of curvilinear contacts between the geological layers. Application of curvilinear grids allows to obtain more accurate results than when calculating only using Cartesian grids. The resulting parallelization efficiency is almost 100% up to 4096 processes (we used 128 processes as a basis to find efficiency). With number of processes larger than 4096, an expected gradual decrease in efficiency is observed. The rate of decline is not great, so at 16384 processes the parallelization efficiency remains at 80%.
-
The concentration of powerful acoustic beams in a viscoelastic medium with non-uniform distribution of the air cavities
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 517-533Views (last year): 6.It is known that the sound speed in medium that contain highly compressible inclusions, e.g. air pores in an elastic medium or gas bubbles in the liquid may be significantly reduced compared to a homogeneous medium. Effective nonlinear parameter of medium, describing the manifestation of nonlinear effects, increases hundreds and thousands of times because of the large differences in the compressibility of the inclusions and the medium. Spatial change in the concentration of such inclusions leads to the variable local sound speed, which in turn calls the spatial-temporal redistribution of acoustic energy in the wave and the distortion of its temporal profiles and cross-section structure of bounded beams. In particular, focal areas can form. Under certain conditions, the sound channel is formed that provides waveguide propagation of acoustic signals in the medium with similar inclusions. Thus, it is possible to control spatial-temporal structure of acoustic waves with the introduction of highly compressible inclusions with a given spatial distribution and concentration. The aim of this work is to study the propagation of acoustic waves in a rubberlike material with non-uniform spatial air cavities. The main objective is the development of an adequate theory of such structurally inhomogeneous media, theory of propagation of nonlinear acoustic waves and beams in these media, the calculation of the acoustic fields and identify the communication parameters of the medium and inclusions with characteristics of propagating waves. In the work the evolutionary self-consistent equation with integro-differential term is obtained describing in the low-frequency approximation propagation of intense acoustic beams in a medium with highly compressible cavities. In this equation the secondary acoustic field is taken into account caused by the dynamics of the cavities oscillations. The method is developed to obtain exact analytical solutions for nonlinear acoustic field of the beam on its axis and to calculate the field in the focal areas. The obtained results are applied to theoretical modeling of a material with non-uniform distribution of strongly compressible inclusions.
-
On tire models accounting for both deformed state and coupled dry friction in a contact spot
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 163-173A proposed approximate model of the rolling of a deforming wheel with a pneumatic tire allows one to account as well forces in tires as the effect of the dry friction on the stability of the rolling upon the shimmy phenomenon prognosis. The model os based on the theory of the dry friction with combined kinematics of relative motion of interacting bodies, i. e. under the condition of simultaneous rolling, sliding, and spinning with accounting for the real shape of a contact spot and contact pressure distribution. The resultant vector and couple of the forces generated by the contact interaction with dry friction are defined by integration over the contact area, whereas the static contact pressure under the conditions of vanishing velocity of sliding and angular velocity of spinning is computed after the finite-element solution for the statical contact of a pneumatic with a rigid road with accounting forreal internal structure and properties of a tire. The solid finite element model of a typical tire with longitudinal thread is used below as a background. Given constant boost pressure, vertical load and static friction factor 0.5 the numerical solution is constructed, as well as the appropriate solutions for lateral and torsional kinematic loading. It is shown that the contact interaction of a pneumatic tire and an absolutely rigid road could be represented without crucial loss of accuracy as two typical stages, the adhesion and the slip; the contact area shape remains nevertheless close to a circle. The approximate diagrams are constructed for both lateral force and friction torque; on the initial stage the diagrams are linear so that corresponds to the elastic deformation of a tire while on the second stage both force and torque values are constant and correspond to the dry friction force and torque. For the last stages the approximate formulae for the longitudinal and lateral friction force and the friction torque are constructed on the background of the theory of the dry friction with combined kinematics. The obtained model can be treated as a combination of the Keldysh model of elastic wheel with no slip and spin and the Klimov rigid wheel model interacting with a road by dry friction forces.
-
Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"