Результаты поиска по 'vectorization':
Найдено статей: 67
  1. Voronina M.Y., Orlov Y.N.
    Identification of the author of the text by segmentation method
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1199-1210

    The paper describes a method for recognizing authors of literary texts by the proximity of fragments into which a separate text is divided to the standard of the author. The standard is the empirical frequency distribution of letter combinations, built on a training sample, which included expertly selected reliably known works of this author. A set of standards of different authors forms a library, within which the problem of identifying the author of an unknown text is solved. The proximity between texts is understood in the sense of the norm in L1 for the frequency vector of letter combinations, which is constructed for each fragment and for the text as a whole. The author of an unknown text is assigned the one whose standard is most often chosen as the closest for the set of fragments into which the text is divided. The length of the fragment is optimized based on the principle of the maximum difference in distances from fragments to standards in the problem of recognition of «friend–foe». The method was tested on the corpus of domestic and foreign (translated) authors. 1783 texts of 100 authors with a total volume of about 700 million characters were collected. In order to exclude the bias in the selection of authors, authors whose surnames began with the same letter were considered. In particular, for the letter L, the identification error was 12%. Along with a fairly high accuracy, this method has another important property: it allows you to estimate the probability that the standard of the author of the text in question is missing in the library. This probability can be estimated based on the results of the statistics of the nearest standards for small fragments of text. The paper also examines statistical digital portraits of writers: these are joint empirical distributions of the probability that a certain proportion of the text is identified at a given level of trust. The practical importance of these statistics is that the carriers of the corresponding distributions practically do not overlap for their own and other people’s standards, which makes it possible to recognize the reference distribution of letter combinations at a high level of confidence.

  2. Danilov G.V., Zhukov V.V., Kulikov A.S., Makashova E.S., Mitin N.A., Orlov Y.N.
    Comparative analysis of statistical methods of scientific publications classification in medicine
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 921-933

    In this paper the various methods of machine classification of scientific texts by thematic sections on the example of publications in specialized medical journals published by Springer are compared. The corpus of texts was studied in five sections: pharmacology/toxicology, cardiology, immunology, neurology and oncology. We considered both classification methods based on the analysis of annotations and keywords, and classification methods based on the processing of actual texts. Methods of Bayesian classification, reference vectors, and reference letter combinations were applied. It is shown that the method of classification with the best accuracy is based on creating a library of standards of letter trigrams that correspond to texts of a certain subject. It is turned out that for this corpus the Bayesian method gives an error of about 20%, the support vector machine has error of order 10%, and the proximity of the distribution of three-letter text to the standard theme gives an error of about 5%, which allows to rank these methods to the use of artificial intelligence in the task of text classification by industry specialties. It is important that the support vector method provides the same accuracy when analyzing annotations as when analyzing full texts, which is important for reducing the number of operations for large text corpus.

  3. Zavodskikh R.K., Efanov N.N.
    Performance prediction for chosen types of loops over one-dimensional arrays with embedding-driven intermediate representations analysis
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 211-224

    The method for mapping of intermediate representations (IR) set of C, C++ programs to vector embedding space is considered to create an empirical estimation framework for static performance prediction using LLVM compiler infrastructure. The usage of embeddings makes programs easier to compare due to avoiding Control Flow Graphs (CFG) and Data Flow Graphs (DFG) direct comparison. This method is based on transformation series of the initial IR such as: instrumentation — injection of artificial instructions in an instrumentation compiler’s pass depending on load offset delta in the current instruction compared to the previous one, mapping of instrumented IR into multidimensional vector with IR2Vec and dimension reduction with t-SNE (t-distributed stochastic neighbor embedding) method. The D1 cache miss ratio measured with perf stat tool is considered as performance metric. A heuristic criterion of programs having more or less cache miss ratio is given. This criterion is based on embeddings of programs in 2D-space. The instrumentation compiler’s pass developed in this work is described: how it generates and injects artificial instructions into IR within the used memory model. The software pipeline that implements the performance estimation based on LLVM compiler infrastructure is given. Computational experiments are performed on synthetic tests which are the sets of programs with the same CFGs but with different sequences of offsets used when accessing the one-dimensional array of a given size. The correlation coefficient between performance metric and distance to the worst program’s embedding is measured and proved to be negative regardless of t-SNE initialization. This fact proves the heuristic criterion to be true. The process of such synthetic tests generation is also considered. Moreover, the variety of performance metric in programs set in such a test is proposed as a metric to be improved with exploration of more tests generators.

  4. Poddubny V.V., Romanovich O.V.
    Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450

    The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.

    Views (last year): 1. Citations: 3 (RSCI).
  5. Irkhin I.A., Bulatov V.G., Vorontsov K.V.
    Additive regularizarion of topic models with fast text vectorizartion
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1515-1528

    The probabilistic topic model of a text document collection finds two matrices: a matrix of conditional probabilities of topics in documents and a matrix of conditional probabilities of words in topics. Each document is represented by a multiset of words also called the “bag of words”, thus assuming that the order of words is not important for revealing the latent topics of the document. Under this assumption, the problem is reduced to a low-rank non-negative matrix factorization governed by likelihood maximization. In general, this problem is ill-posed having an infinite set of solutions. In order to regularize the solution, a weighted sum of optimization criteria is added to the log-likelihood. When modeling large text collections, storing the first matrix seems to be impractical, since its size is proportional to the number of documents in the collection. At the same time, the topical vector representation (embedding) of documents is necessary for solving many text analysis tasks, such as information retrieval, clustering, classification, and summarization of texts. In practice, the topical embedding is calculated for a document “on-the-fly”, which may require dozens of iterations over all the words of the document. In this paper, we propose a way to calculate a topical embedding quickly, by one pass over document words. For this, an additional constraint is introduced into the model in the form of an equation, which calculates the first matrix from the second one in linear time. Although formally this constraint is not an optimization criterion, in fact it plays the role of a regularizer and can be used in combination with other regularizers within the additive regularization framework ARTM. Experiments on three text collections have shown that the proposed method improves the model in terms of sparseness, difference, logLift and coherence measures of topic quality. The open source libraries BigARTM and TopicNet were used for the experiments.

  6. Shatrov A.V., Okhapkin V.P.
    Optimal control of bank investment as a factorof economic stability
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 959-967

    This paper presents a model of replenishment of bank liquidity by additional income of banks. Given the methodological basis for the necessity for bank stabilization funds to cover losses during the economy crisis. An econometric derivation of the equations describing the behavior of the bank financial and operating activity performed. In accordance with the purpose of creating a stabilization fund introduces an optimality criterion used controls. Based on the equations of the behavior of the bank by the method of dynamic programming is derived a vector of optimal controls.

    Views (last year): 5.
  7. Bobkov S.A., Teslyuk A.B., Gorobtsov O.Yu., Yefanov O.M., Kurta R.P., Ilyin V.A., Golosova M.V., Vartanyants I.A.
    XFEL diffraction patterns representation method for classification, indexing and search
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 631-639

    The paper presents the results of application of machine learning methods: principle component analysis and support vector machine for classification of diffraction images produced in experiments at free-electron lasers. High efficiency of this approach presented by application to simulated data of adenovirus capsid and bluetongue virus core. This dataset were simulated with taking into account the real conditions of the experiment on lasers free electrons such as noise and features of used detectors.

    Views (last year): 6.
Pages: « first previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"