All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Designing a zero on a linear manifold, a polyhedron, and a vertex of a polyhedron. Newton methods of minimization
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 563-591Views (last year): 6.We consider the approaches to the construction of methods for solving four-dimensional programming problems for calculating directions for multiple minimizations of smooth functions on a set of a given set of linear equalities. The approach consists of two stages.
At the first stage, the problem of quadratic programming is transformed by a numerically stable direct multiplicative algorithm into an equivalent problem of designing the origin of coordinates on a linear manifold, which defines a new mathematical formulation of the dual quadratic problem. For this, a numerically stable direct multiplicative method for solving systems of linear equations is proposed, taking into account the sparsity of matrices presented in packaged form. The advantage of this approach is to calculate the modified Cholesky factors to construct a substantially positive definite matrix of the system of equations and its solution in the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made in the position of the next processed row of the matrix, which allows the use of static data storage formats.
At the second stage, the necessary and sufficient optimality conditions in the form of Kuhn–Tucker determine the calculation of the direction of descent — the solution of the dual quadratic problem is reduced to solving a system of linear equations with symmetric positive definite matrix for calculating of Lagrange's coefficients multipliers and to substituting the solution into the formula for calculating the direction of descent.
It is proved that the proposed approach to the calculation of the direction of descent by numerically stable direct multiplicative methods at one iteration requires a cubic law less computation than one iteration compared to the well-known dual method of Gill and Murray. Besides, the proposed method allows the organization of the computational process from any starting point that the user chooses as the initial approximation of the solution.
Variants of the problem of designing the origin of coordinates on a linear manifold, a convex polyhedron and a vertex of a convex polyhedron are presented. Also the relationship and implementation of methods for solving these problems are described.
-
Direct multiplicative methods for sparse matrices. Newton methods
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703Views (last year): 7. Citations: 1 (RSCI).We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.
In this paper, this algorithm is the basis for solving the following problems:
Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.
Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.
Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.
-
Direct multiplicative methods for sparse matrices. Quadratic programming
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 407-420Views (last year): 32.A numerically stable direct multiplicative method for solving systems of linear equations that takes into account the sparseness of matrices presented in a packed form is considered. The advantage of the method is the calculation of the Cholesky factors for a positive definite matrix of the system of equations and its solution within the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made to the position of the next processed row of the matrix, which allows using static data storage formats. The solution of the system of linear equations by a direct multiplicative algorithm is, like the solution with LU-decomposition, just another scheme for implementing the Gaussian elimination method.
The calculation of the Cholesky factors for a positive definite matrix of the system and its solution underlies the construction of a new mathematical formulation of the unconditional problem of quadratic programming and a new form of specifying necessary and sufficient conditions for optimality that are quite simple and are used in this paper to construct a new mathematical formulation for the problem of quadratic programming on a polyhedral set of constraints, which is the problem of finding the minimum distance between the origin ordinate and polyhedral boundary by means of a set of constraints and linear algebra dimensional geometry.
To determine the distance, it is proposed to apply the known exact method based on solving systems of linear equations whose dimension is not higher than the number of variables of the objective function. The distances are determined by the construction of perpendiculars to the faces of a polyhedron of different dimensions. To reduce the number of faces examined, the proposed method involves a special order of sorting the faces. Only the faces containing the vertex closest to the point of the unconditional extremum and visible from this point are subject to investigation. In the case of the presence of several nearest equidistant vertices, we investigate a face containing all these vertices and faces of smaller dimension that have at least two common nearest vertices with the first face.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"