Результаты поиска по 'visualization':
Найдено статей: 42
  1. Rusanova Ya.M., Cherdyntseva M.I.
    Visualization of three-dimensional scenes. Technology for data storing and manipulating
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 119-127

    This article is devoted to some problems of declaring and storing information for objects' visualization. The storage structure and resources control technology can be applied for real-time visualization of three-dimensional scenes. Such instruments as Sample Framework from DirectX SDK and Direct3D Extension Library (D3DX) were used in the implementation.

    Views (last year): 2. Citations: 2 (RSCI).
  2. Aksenov A.A.
    FlowVision: Industrial computational fluid dynamics
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 5-20

    The work submits new release of the FlowVision software designed for automation of engineering calculations in computational fluid dynamics: FlowVision 3.09.05. The FlowVision software is used for solving different industrial problems. Its popularity is based on the capability to solve complex non-tradition problems involving different physical processes. The paradigm of complete automation of labor-intensive and time-taking processes like grid generation makes FlowVision attractive for many engineers. FlowVision is completely developer-independent software. It includes an advanced graphical interface, the system for specifying a computational project as well as the system for flow visualization on planes, on curvilinear surfaces and in volume by means of different methods: plots, color contours, iso-lines, iso-surfaces, vector fields. Besides that, FlowVision provides tools for calculation of integral characteristics on surfaces and in volumetric regions.

    The software is based on the finite-volume approach to approximation of the partial differential equations describing fluid motion and accompanying physical processes. It provides explicit and implicit methods for time integration of these equations. The software includes automated generator of unstructured grid with capability of its local dynamic adaptation. The solver involves two-level parallelism which allows calculations on computers with distributed and shared memory (coexisting in the same hardware). FlowVision incorporates a wide spectrum of physical models: different turbulence models, models for mass transfer accounting for chemical reactions and radioactive decay, several combustion models, a dispersed phase model, an electro-hydrodynamic model, an original VOF model for tracking moving interfaces. It should be noted that turbulence can be simulated within URANS, LES, and ILES approaches. FlowVision simulates fluid motion with velocities corresponding to all possible flow regimes: from incompressible to hypersonic. This is achieved by using an original all-speed velocity-pressure split algorithm for integration of the Navier-Stokes equations.

    FlowVision enables solving multi-physic problems with use of different modeling tools. For instance, one can simulate multi-phase flows with use of the VOF method, flows past bodies moving across a stationary grid (within Euler approach), flows in rotary machines with use of the technology of sliding grid. Besides that, the software solves fluid-structure interaction problems using the technology of two-way coupling of FlowVision with finite-element codes. Two examples of solving challenging problems in the FlowVision software are demonstrated in the given article. The first one is splashdown of a spacecraft after deceleration by means of jet engines. This problem is characterized by presence of moving bodies and contact surface between the air and the water in the computational domain. The supersonic jets interact with the air-water interphase. The second problem is simulation of the work of a human heart with artificial and natural valves designed on the basis of tomographic investigations with use of a finite-element model of the heart. This problem is characterized by two-way coupling between the “liquid” computational domain and the finite-element model of the hart muscles.

    Views (last year): 30. Citations: 8 (RSCI).
  3. The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.

    Views (last year): 2.
  4. The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.

    Views (last year): 2. Citations: 2 (RSCI).
  5. Chukanov S.N.
    Modeling the structure of a complex system based on estimation of the measure of interaction of subsystems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 707-719

    The using of determining the measure of interaction between channels when choosing the configuration structure of a control system for complex dynamic objects is considered in the work. The main methods for determining the measure of interaction between subsystems of complex control systems based on the methods RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix) are presented. When choosing a control configuration, simple configurations are preferable, as they are simple in design, maintenance and more resistant to failures. However, complex configurations provide higher performance control systems. Processes in large dynamic objects are characterized by a high degree of interaction between process variables. For the design of the control structure interaction measures are used, namely, the selection of the control structure and the decision on the configuration of the controller. The choice of control structure is to determine which dynamic connections should be used to design the controller. When a structure is selected, connections can be used to configure the controller. For large systems, it is proposed to pre-group the components of the vectors of input and output signals of the actuators and sensitive elements into sets in which the number of variables decreases significantly in order to select a control structure. A quantitative estimation of the decentralization of the control system based on minimizing the sum of the off-diagonal elements of the PM matrix is given. An example of estimation the measure of interaction between components of strong coupled subsystems and the measure of interaction between components of weak coupled subsystems is given. A quantitative estimation is given of neglecting the interaction of components of weak coupled subsystems. The construction of a weighted graph for visualizing the interaction of the subsystems of a complex system is considered. A method for the formation of the controllability gramian on the vector of output signals that is invariant to state vector transformations is proposed in the paper. An example of the decomposition of the stabilization system of the components of the flying vehicle angular velocity vector is given. The estimation of measures of the mutual influence of processes in the channels of control systems makes it possible to increase the reliability of the systems when accounting for the use of analytical redundancy of information from various devices, which reduces the mass and energy consumption. Methods for assessing measures of the interaction of processes in subsystems of control systems can be used in the design of complex systems, for example, motion control systems, orientation and stabilization systems of vehicles.

  6. Yakovleva T.V.
    Review of MRI processing techniques and elaboration of a new two-parametric method of moments
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 231-244

    The paper provides a review of the existing methods of signals’ processing within the conditions of the Rice statistical model applicability. There are considered the principle development directions, the existing limitations and the improvement possibilities concerning the methods of solving the tasks of noise suppression and analyzed signals’ filtration by the example of magnetic-resonance visualization. A conception of a new approach to joint calculation of Rician signal’s both parameters has been developed based on the method of moments in two variants of its implementation. The computer simulation and the comparative analysis of the obtained numerical results have been conducted.

    Citations: 10 (RSCI).
  7. Usanov M.S., Kulberg N.S., Morozov S.P.
    Development of anisotropic nonlinear noise-reduction algorithm for computed tomography data with context dynamic threshold
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 233-248

    The article deals with the development of the noise-reduction algorithm based on anisotropic nonlinear data filtering of computed tomography (CT). Analysis of domestic and foreign literature has shown that the most effective algorithms for noise reduction of CT data use complex methods for analyzing and processing data, such as bilateral, adaptive, three-dimensional and other types of filtrations. However, a combination of such techniques is rarely used in practice due to long processing time per slice. In this regard, it was decided to develop an efficient and fast algorithm for noise-reduction based on simplified bilateral filtration method with three-dimensional data accumulation. The algorithm was developed on C ++11 programming language in Microsoft Visual Studio 2015. The main difference of the developed noise reduction algorithm is the use an improved mathematical model of CT noise, based on the distribution of Poisson and Gauss from the logarithmic value, developed earlier by our team. This allows a more accurate determination of the noise level and, thus, the threshold of data processing. As the result of the noise reduction algorithm, processed CT data with lower noise level were obtained. Visual evaluation of the data showed the increased information content of the processed data, compared to original data, the clarity of the mapping of homogeneous regions, and a significant reduction in noise in processing areas. Assessing the numerical results of the algorithm showed a decrease in the standard deviation (SD) level by more than 6 times in the processed areas, and high rates of the determination coefficient showed that the data were not distorted and changed only due to the removal of noise. Usage of newly developed context dynamic threshold made it possible to decrease SD level on every area of data. The main difference of the developed threshold is its simplicity and speed, achieved by preliminary estimation of the data array and derivation of the threshold values that are put in correspondence with each pixel of the CT. The principle of its work is based on threshold criteria, which fits well both into the developed noise reduction algorithm based on anisotropic nonlinear filtration, and another algorithm of noise-reduction. The algorithm successfully functions as part of the MultiVox workstation and is being prepared for implementation in a single radiological network of the city of Moscow.

    Views (last year): 21.
  8. Meleshko E.V., Afanasenko T.S., Gadzhimirzayev Sh.M., Pashkov R.A., Gilya-Zetinov A.A., Tsybulko E.A., Zaitseva A.S., Khelvas A.V.
    Discrete simulation of the road restoration process
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1255-1268

    This work contains a description of the results of modeling the process of maintaining the readiness of a section of the road network under strikes of with specified parameters. A one-dimensional section of road up to 40 km long with a total number of strikes up to 100 during the work of the brigade is considered. A simulation model has been developed for carrying out work to maintain it in working condition by several groups (engineering teams) that are part of the engineering and road division. A multicopter-type unmanned aerial vehicle is used to search for the points of appearance of obstacles. Life cycle schemes of the main participants of the tactical scene have been developed and an event-driven model of the tactical scene has been built. The format of the event log generated as a result of simulation modeling of the process of maintaining a road section is proposed. To visualize the process of maintaining the readiness of a road section, it is proposed to use visualization in the cyclogram format.

    An XSL style has been developed for building a cyclogram based on an event log. As an algorithm for making a decision on the assignment of barriers to brigades, the simplest algorithm has been adopted, prescribing choosing the nearest barrier. A criterion describing the effectiveness of maintenance work on the site based on the assessment of the average speed of vehicles on the road section is proposed. Graphs of the dependence of the criterion value and the root-meansquare error depending on the length of the maintained section are plotted and an estimate is obtained for the maximum length of the road section maintained in a state of readiness with specified values for the selected quality indicator with specified characteristics of striking and performance of repair crews. The expediency of carrying out work to maintain readiness by several brigades that are part of the engineering and road division operating autonomously is shown.

    The influence of the speed of the unmanned aerial vehicle on the ability to maintain the readiness of the road section is analyzed. The speed range for from 10 to 70 km/h is considered, which corresponds to the technical capabilities of multicoptertype reconnaissance unmanned aerial vehicles. The simulation results can be used as part of a complex simulation model of an army offensive or defensive operation and for solving the problem of optimizing the assignment of tasks to maintain the readiness of road sections to engineering and road brigades. The proposed approach may be of interest for the development of military-oriented strategy games.

  9. Firsov A.A., Isaenkov Yu.I., Krupskiy M.G., Rudakov V.Yu., Filimonova E.A., Yarantsev D.A., Leonov S.B.
    Nonequilibrium initiation of volumetric combustion in a combustion engine: modeling and experimental setup
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 911-922

    The paper presents results of experimental, computational and analytical study of the effect of nonequilibrium chemical activation of air-fuel mixture on effectiveness of Diesel process. The generation of a high-voltage multi-streamer discharge in combustion chamber at the compression phase is considered as the method of the activation. The description of electrical discharge system, results of measurement and visualization are presented. The plasma-chemical kinetics of nonequilibrium ignition is analyzed to establish a passway for a proper reduction of chemical kinetics scheme. The results of numerical simulation of gas dynamic processes at presence of plasma-assisted combustion in a geometrical configuration close to the experimental one are described.

    Views (last year): 3. Citations: 4 (RSCI).
  10. Sviridenko A.B., Zelenkov G.A.
    Correlation and realization of quasi-Newton methods of absolute optimization
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 55-78

    Newton and quasi-Newton methods of absolute optimization based on Cholesky factorization with adaptive step and finite difference approximation of the first and the second derivatives. In order to raise effectiveness of the quasi-Newton methods a modified version of Cholesky decomposition of quasi-Newton matrix is suggested. It solves the problem of step scaling while descending, allows approximation by non-quadratic functions, and integration with confidential neighborhood method. An approach to raise Newton methods effectiveness with finite difference approximation of the first and second derivatives is offered. The results of numerical research of algorithm effectiveness are shown.

    Views (last year): 7. Citations: 5 (RSCI).
Pages: next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"