All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Most viewed papers
Most cited papers (RSCI)-
The analysis of player’s behaviour in modified “Sea battle” game
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 817-827Views (last year): 18.The well-known “Sea battle” game is in the focus of the current job. The main goal of the article is to provide modified version of “Sea battle” game and to find optimal players’ strategies in the new rules. Changes were applied to attacking strategies (new option to attack hitting four cells in one shot was added) as well as to the size of the field (sizes of 10 × 10, 20 × 20, 30 × 30 were used) and to the rules of disposal algorithms during the game (new possibility to move the ship off the attacking zone). The game was solved with the use of game theory capabilities: payoff matrices were found for each version of altered rules, for which optimal pure and mixed strategies were discovered. For solving payoff matrices iterative method was used. The simulation was in applying five attacking algorithms and six disposal ones with parameters variation due to the game of players with each other. Attacking algorithms were varied in 100 sets of parameters, disposal algorithms — in 150 sets. Major result is that using such algorithms the modified “Sea battle” game can be solved — that implies the possibility of finding stable pure and mixed strategies of behaviour, which guarantee the sides gaining optimal results in game theory terms. Moreover, influence of modifying the rules of “Sea battle” game is estimated. Comparison with prior authors’ results on this topic was made. Based on matching the payoff matrices with the statistical analysis, completed earlier, it was found out that standard “Sea battle” game could be represented as a special case of game modifications, observed in this article. The job is important not only because of its applications in war area, but in civil areas as well. Use of article’s results could save resources in exploration, provide an advantage in war conflicts, defend devices under devastating impact.
-
Numerical investigation of the gas-condensate mixture flow in a porous medium
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 209-219Views (last year): 18. Citations: 2 (RSCI).In the last decades, the development of methods for increasing the efficiency of hydrocarbon extraction in fields with unconventional reserves containing large amounts of gas condensate is of great importance. This makes important the development of methods of mathematical modeling that realistically describe physical processes in a gas-condensate mixture in a porous medium.
In the paper, a mathematical model which describes the dynamics of the pressure, velocity and concentration of the components of a two-component two-phase mixture entering a laboratory model of plast filled with a porous substance with known physicochemical properties is considered. The mathematical model is based on a system of nonlinear spatially one-dimensional partial differential equations with the corresponding initial and boundary conditions. Laboratory experiments show that during a finite time the system stabilizes, what gives a basis to proceed to the stationary formulation of the problem.
The numerical solution of the formulated system of ordinary differential equations is realized in the Maple environment on the basis of the Runge–Kutta procedure. It is shown that the physical parameters of the gascondensate mixture, which characterize the modeled system in the stabilization regime, obtained on this basis, are in good agreement with the available experimental data. This confirms the correctness of the chosen approach and the validity of its further application and development for computer modeling of physical processes in gas-condensate mixtures in a porous medium. The paper presents a mathematical formulation of the system of partial differential equations and of respective system stationary equations, describes the numerical approach, and discusses the numerical results obtained in comparison with experimental data.
-
The influence of the coal dust composition on the propagation speed of the combustion front of the coal dust with an inhomogeneous particle distribution in the air
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 221-230Views (last year): 18.The problem of the combustion of a gas suspension with an inhomogeneous distribution of particles over space occurs exists for the coal dust suspension combustion in combustion chambers and burners. The inhomogeneous distribution of particles in space can significantly affect the combustion velocity of the aerosolve of coal dust. The purpose of the present work is the numerically study the effect of the inhomogeneous distribution of particles and the composition of the coal dust on the combustion velocity of the coal dust in the air.
The physical and mathematical model of combustion of air-coal dust mixture with an inhomogeneous distribution of coal dust particles over space has been developed. The physical and mathematical formulation of the problem took into account the release of combustible volatile components from the particles upon their heating, the subsequent reaction of volatile components with air, a heterogeneous reaction on the surface of the particles, and the dependence of the thermal conductivity of the gas on temperature.
A parametric study was made of the effect of mass concentration, the content of volatile and the particle size of coal dust on the burning speed of a suspension of coal dust in the air. It is shown that the burning rate is greater for particles with a lower content of volatile components. The influence of the spatial distribution of particles on the burning rate of the coal-air mixture is analyzed. It is shown that the propagation velocity of the combustion front with respect to the suspension with an inhomogeneous particle distribution is higher than the propagation speed of the combustion front with respect to the suspension with a homogeneous particle distribution.
- Views (last year): 18.
-
Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 667-678Views (last year): 18.We consider an application of the Message Passing Interface (MPI) technology for parallelization of the program code which solves equation of the linear elasticity theory. The solution of this equation describes the propagation of elastic waves in demormable rigid bodies. The solution of such direct problem of seismic wave propagation is of interest in seismics and geophysics. Our implementation of solver uses grid-characteristic method to make simulations. We consider technique to reduce time of communication between MPI processes during the simulation. This is important when it is necessary to conduct modeling in complex problem formulations, and still maintain the high level of parallelism effectiveness, even when thousands of processes are used. A solution of the problem of effective communication is extremely important when several computational grids with arbirtrary geometry of contacts between them are used in the calculation. The complexity of this task increases if an independent distribution of the grid nodes between processes is allowed. In this paper, a generalized approach is developed for processing contact conditions in terms of nodes reinterpolation from a given section of one grid to a certain area of the second grid. An efficient way of parallelization and establishing effective interprocess communications is proposed. For provided example problems we provide wave fileds and seismograms for both 2D and 3D formulations. It is shown that the algorithm can be realized both on Cartesian and on structured (curvilinear) computational grids. The considered statements demonstrate the possibility of carrying out calculations taking into account the surface topographies and curvilinear geometry of curvilinear contacts between the geological layers. Application of curvilinear grids allows to obtain more accurate results than when calculating only using Cartesian grids. The resulting parallelization efficiency is almost 100% up to 4096 processes (we used 128 processes as a basis to find efficiency). With number of processes larger than 4096, an expected gradual decrease in efficiency is observed. The rate of decline is not great, so at 16384 processes the parallelization efficiency remains at 80%.
-
Application of the streamline method for nonlinear filtration problems acceleration
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728Views (last year): 18.The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.
To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.
In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.
Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.
-
Stress-induced duplex destabilization (SIDD) profiles for T7 bacteriophage promoters
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 867-878Views (last year): 18.The functioning of DNA regulatory regions rely primarily on their physicochemical and structural properties but not on nucleotide sequences, i.e. ‘genetic text’. The formers are responsible for coding of DNA-protein interactions that govern various regulatory events. One of the characteristics is SIDD (Stress-Induced Duplex Destabilization) that quantify DNA duplex region propensity to melt under the imposed superhelical stress. The duplex property has been shown to participate in activity of various regulatory regions. Here we employ the SIDD model to calculate melting probability profiles for T7 bacteriophage promoter sequences. The genome is characterized by small size (approximately 40 thousand nucleotides) and temporal organization of expression: at the first stage of infection early T7 DNA region is transcribed by the host cell RNA polymerase, later on in life cycle phage-specific RNA polymerase performs transcription of class II and class III genes regions. Differential recognition of a particular group of promoters by the enzyme cannot be solely explained by their nucleotide sequences, because of, among other reasons, it is fairly similar among most the promoters. At the same time SIDD profiles obtained vary significantly and are clearly separated into groups corresponding to functional promoter classes of T7 DNA. For example, early promoters are affected by the same maximally destabilized DNA duplex region located at the varying region of a particular promoter. class II promoters lack substantially destabilized regions close to transcription start sites. Class III promoters, in contrast, demonstrate characteristic melting probability maxima located in the near-downstream region in all cases. Therefore, the apparent differences among the promoter groups with exceptional textual similarity (class II and class III differ by only few singular substitutions) were established. This confirms the major impact of DNA primary structure on the duplex parameter as well as a need for a broad genetic context consideration. The differences in melting probability profiles obtained using SIDD model alongside with other DNA physicochemical properties appears to be involved in differential promoter recognition by RNA polymerases.
-
Nonlinear supratransmission in a Pt3Al crystal at intense external influence
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 109-117Views (last year): 18.The effect of the nonlinear supratransmission in crystal of A3B stoichiometry is studied by molecular dynamics on the example of Pt3Al alloy. This effect is the transfer of energy at frequencies outside the phonon spectrum of the crystal. Research of the mechanisms of energy transport from the material surface to the interior is the important task, both from the theoretical point of view and from the prospects for practical application in the modification of near-surface layers by treatment with intense external influence of various types. The model was a three-dimensional face-centered cubic crystal whose atoms interact by means of the multiparticle potential obtained by the embedded atom method, which provides greater realism of the model in comparison with the use of pair potentials. Various forms of oscillation of the external influence region are considered. The possibility of energy transport from the crystal surface to the interior is shown by excitation of quasi-breathers near the region of influence and their subsequent destruction in the crystal and scattering of the energy stored on them. The quasibreathers are high-amplitude nonlinear atoms' oscillations of the alloy lightweight component at frequencies outside the phonon spectrum of the crystal. This effect was observed not with every oscillation's form of the region of influence. Quasi-breathers appeared most intensely near the region of influence with sinusoidal form oscillations. The results obtained indicate that the contribution of quasi-breathers to the energy transfer through the crystal increases with increasing amplitude of the influence. The range of amplitudes from 0.05 to 0.5 Å is considered. The frequency of the influence varied from 0.2 to 15 THz, which ensured the coverage of the entire spectrum of lowamplitude oscillations for this crystal's model. The minimum magnitude of the external effect amplitude at which this effect was observed was found to be 0.15 Å. At amplitudes greater than 0.5 Å, the cell rapidly decays for frequencies close to the optical branch of the phonon spectrum. The results of the study can be useful for laser processing of materials, surface treatment by low-energy plasma, and also in radiation materials science.
-
Topological basis of ECG classification
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 895-915Views (last year): 17. Citations: 4 (RSCI).A new approach to the identification of hardly perceptible diagnostically significant changes in electrocardiograms is suggested. The approach is based on the analysis of topological transformations in wavelet spectra associated with electrocardiograms. Possible practical application of the approach developed is discussed.
-
Natural models of parallel computations
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 781-785Views (last year): 17. Citations: 2 (RSCI).Course “Natural models of parallel computing”, given for senior students of the Faculty of Computational Mathematics and Cybernetics, Moscow State University, is devoted to the issues of supercomputer implementation of natural computational models and is, in fact, an introduction to the theory of natural computing, a relatively new branch of science, formed at the intersection of mathematics, computer science and natural sciences (especially biology). Topics of the natural computing include both already classic subjects such as cellular automata, and relatively new, introduced in the last 10–20 years, such as swarm intelligence. Despite its biological origin, all these models are widely applied in the fields related to computer data processing. Research in the field of natural computing is closely related to issues and technology of parallel computing. Presentation of theoretical material of the course is accompanied by a consideration of the possible schemes for parallel computing, in the practical part of the course it is supposed to perform by the students a software implementation using MPI technology and numerical experiments to investigate the effectiveness of the chosen schemes of parallel computing.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"