Результаты поиска по 'Монте-Карло':
Найдено статей: 30
  1. Зинченко Д.А., Никонов Э.Г., Зинченко А.И.
    Моделирование и анализ основных характеристик внутренней трековой системы многофункционального детектора частиц MPD методом Монте-Карло
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 87-94

    В настоящее время в ОИЯИ (Дубна) осуществляется строительство ускорительного комплекса NICA для проведения экспериментов по изучению взаимодействий релятивистских ядер и поляризованных частиц (протонов и дейтронов). Одна из создаваемых экспериментальных установок MPD (MultiPurpose Detector) рассчитана на изучение ядро-ядерных, протон-ядерных и протон-протонных взаимодействий. В связи с планами развития установки MPD рассматривается возможность создания внутреннего трекера с использованием кремниевых пиксельных детекторов нового поколения. Предполагается, что такой детектор позволит значительно повысить исследовательский потенциал эксперимента как для ядро-ядерных (за счет высокого пространственного разрешения вблизи области пересечения пучков), так и для протон-протонных (за счет высокого быстродействия) взаимодействий.

    В представленной работе изучаются основные характеристики такого трекера с использованием данных по протон-протонным взаимодействиям, полученных с помощью моделирования методом Монте-Карло. В частности, оцениваются возможности детектора по восстановлению вершин распада короткоживущих частиц и по выделению редких событий таких распадов среди продуктов гораздо более вероятных «обычных» взаимодействий. Также затрагивается проблема разделения вершин взаимодействий для восстановления наложенных событий при высокой светимости ускорителя и способность детектора проводить быструю селекцию редких событий (триггер). Полученные результаты могут быть использованы для обоснования необходимости создания данного детектора и развития системы триггера высокого уровня, основанного в том числе на методах машинного обучения.

    Zinchenko D.A., Nikonov E.G., Zinchenko A.I.
    A Monte-Carlo study of the inner tracking system main characteristics for multi purpose particle detector MPD
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 87-94

    At present, the accelerator complex NICA is being built at JINR (Dubna). It is intended for performing experiments to study interactions of relativistic nuclei and polarized particles (protons and deuterons). One of the experimental facilitues MPD (MultiPurpose Detector) was designed to investigate nucleus-nucleus, protonnucleus and proton-proton interactions. The existing plans of future MPD upgrade consider a possibility to install an inner tracker made of the new generation silicon pixel sensors. It is expected that such a detector will considerably enhance the research capability of the experiment both for nucleus-nucleus interactions (due to a high spatial resolution near the collision region) and proton-proton ones (due to a fast detector response).

    This paper presents main characteristics of such a tracker, obtained using a Monte-Carlo simulation of the detector for proton-proton collisions. In particular, the detector ability to reconstruct decay vertices of short-lived particles and perform a selection of rare events of such decays from much more frequent “common” interactions are evaluated. Also, the problem of a separation of multiple collisions during the high luminosity accelerator running and the task of detector triggering on rare events are addressed. The results obtained can be used to justify the necessity to build such a detector and to develop a high-level trigger system, possibly based on machine learning techniques.

    Views (last year): 28.
  2. Будак В.П., Желтов В.С., Калакуцкий Т.К.
    Локальные оценки метода Монте-Карло в решении уравнения глобального освещения с учетом спектрального представления объектов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 75-84

    В статье рассматриваются локальная и двойная локальная оценка метода Монте-Карло при решении уравнения глобального освещения. Локальная оценка позволяет в диффузном приближении рассчитывать освещенность в произвольной точке, тогда как двойная локальная оценка позволяется вычислять непосредственно яркость в заданной точке по заданному направлению. В статье дается математическое обоснование локальных оценок и рассмотрены основные этапы реализации программного обеспечения. Также рассматривается представление трехмерных объектов в базисе сферических функций и возможность использования их в локальных оценках.

    Budak V.P., Zheltov V.S., Kalakutsky T.K.
    Local estimations of Monte Carlo method with the object spectral representation in the solution of global illumination
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 75-84

    The article deals with the local and double local estimation of the Monte Carlo method for solving the equation of global illumination. The local estimation allows calculating the illumination at any point at the approximation of diffuse reflection, whereas the double local estimation allows calculating directly the luminance at a given point in a given direction. The article presents the mathematical basis of local estimations and the basic stages of the software implementation. The representation of three-dimensional objects in the basis of spherical functions and the possibility of using them in the local estimations are also considered.

    Citations: 2 (RSCI).
  3. Прохоров И.В., Жуплев А.С.
    Об эффективности методов максимального сечения в теории переноса излучения
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 573-582

    В работе рассматриваются две модификации метода максимального сечения для решения стационарного уравнения переноса излучения в трехмерной неоднородной среде. Обе модификации основаны на применении метода Монте-Карло к суммированию ряда Неймана для решения уравнения переноса. Одна из них — традиционная, вторая — основана на использовании ветвящихся цепей Маркова. Проводится численное сравнение этих алгоритмов.

    Prokhorov I.V., Zhuplev A.S.
    On the efficiency of the maximum cross section method in radiation transport theory
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582

    We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.

    Views (last year): 4. Citations: 2 (RSCI).
  4. Никулин А.С., Жедяевский Д.Н., Федорова Е.Б.
    Применение искусственных нейронных сетей для подбора состава смесевого хладагента с заданной кривой кипения
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 593-608

    В работе представлен метод подбора состава смесевого хладагента (СХА) с заданной изобарной кривой кипения с помощью искусственной нейронной сети (ИНС). Данный метод основан на использовании 1D-слоев сверточной нейронной сети. Для обучения нейронной сети была применена термодинамическая модель простого теплообменника в программе UniSim design с использованием уравнения состояния Пенга–Робинсона. С помощью термодинамической модели была создана синтетическая база данных по изобарным кривым кипения СХА разного состава. Для записи базы данных был разработан алгоритм на языке программирования Python, и с помощью COM интерфейса была выгружена информация по изобарным кривым кипения для 1 049 500 вариантов состава СХА. Генерация составов СХА была проведена с помощью метода Монте-Карло с равномерным распределением псевдослучайного числа. Авторами разработана архитектура искусственной нейронной сети, которая позволяет подбирать состав СХА. Для обучения ИНС была применена методика циклически изменяемого коэффициента обучения. В результате применения обученной ИНС был подобран состав СХА с минимальным температурным напором 3 К, а максимальным — не более 10 К между горячим и холодным потоками в теплообменнике. Было проведено сравнение предложенного метода с методом поиска наилучшего совпадения в исходной выборке по методу $k$-ближних соседей, а также со стандартным методом оптимизации SQP в программе UniSim design. Показано, что искусственная нейронная сеть может быть использована для подбора оптимального состава хладагента при анализе кривой охлаждения природного газа. Разработанный метод может помочь инженерам подбирать состав СХА в режиме реального времени, что позволит сократить энергетические затраты на сжижение природного газа.

    Nikulin A.S., ZHediaevskii D.N., Fedorova E.B.
    Applying artificial neural network for the selection of mixed refrigerant by boiling curve
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608

    The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by $k$-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.

  5. Ковтанюк А.Е.
    Алгоритмы параллельных вычислений в задачах радиационно кондуктивного теплообмена
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 543-552

    Рассматриваются задачи радиационно-кондуктивного теплообмена в рассеивающем слое, заключающиеся в нахождении температурного профиля и улучшении теплоотдачи от границ слоя. Для их решения применяется итерационный рекурсивный алгоритм, основанный на методе Монте-Карло. Анализируются различные подходы параллелизации предложенного алгоритма.

    Kovtanyuk A.E.
    Algorithms of parallel computing for radiative-conductive heat transfer problems
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 543-552

    The problems of radiative-conductive heat transfer in the scattering layer are considered. They consist in finding the temperature profile and improving the heat transfer from boundaries. For their solution the Monte Carlo method is used. The different approaches of parallelization of proposed algorithm are analyzed.

    Views (last year): 2. Citations: 5 (RSCI).
  6. Двинских Д.М., Пырэу В.В., Гасников А.В.
    О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319

    В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.

    В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.

    Dvinskikh D.M., Pirau V.V., Gasnikov A.V.
    On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319

    In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.

    In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.

  7. Диденко Д.В., Балуев Д.Е., Маров И.В., Никаноров О.Л., Рогожкин С.А., Сорокин С.Е.
    Расчетное моделирование теплофизических процессов в высокотемпературном газоохлаждаемом реакторе
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 895-906

    В настоящее время в Российской Федерации разрабатывается высокотемпературный газоохлаждаемый реактор, являющийся составной частью атомной энерготехнологической станции, предназначенной для крупномасштабного производства водорода. При разработке проекта высокотемпературного газоохлаждаемого реактора одной из ключевых задач является расчетное обоснование принятой конструкции.

    В статье приводится методика расчетного анализа теплофизических характеристик высокотемпературного газоохлаждаемого реактора. Методика базируется на использовании современных вычислительных программ для электронно-вычислительных машин.

    Выполнение задачи теплофизического расчета реактора в целоми активной зоны в частности проводилось в три этапа. Первый этап заключается в обосновании нейтронно-физических характеристик активной зоны блочного типа в процессе выгорания с использованием программы MCU-HTR, основанной на методе Монте-Карло. Вторым и третьим этапами являются исследования течения теплоносителя и температурного состояния реактора и активной зоны в трехмерной постановке с требуемой степенью детализации с помощью программ FlowVision и ANSYS.

    Для проведения расчетных исследований были разработаны расчетные модели проточной части реактора и колонны тепловыделяющих сборок.

    По результатам расчетного моделирования оптимизированы конструкция опорных колонн и нейтронно-физические параметры тепловыделяющей сборки. Это привело к снижению суммарного гидравлического сопротивления реактора и максимальной температуры топливных элементов.

    Показана зависимость максимальной температуры топлива от величины коэффициентов неравномерности энерговыделения, определяемой расположением поглощающих стержней и компактов выгорающего поглотителя в тепловыделяющей сборке.

    Didenko D.V., Baluev D.E., Marov I.V., Nikanorov O.L., Rogozhkin S.A., Sorokin S.E.
    Computational modeling of the thermal and physical processes in the high-temperature gas-cooled reactor
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 895-906

    The development of a high-temperature gas-cooled reactor (HTGR) constituting a part of nuclear power-and-process station and intended for large-scale hydrogen production is now in progress in the Russian Federation. One of the key objectives in development of the high-temperature gas-cooled reactor is the computational justification of the accepted design.

    The article gives the procedure for the computational analysis of thermal and physical characteristics of the high-temperature gas-cooled reactor. The procedure is based on the use of the state-of-the-art codes for personal computer (PC).

    The objective of thermal and physical analysis of the reactor as a whole and of the core in particular was achieved in three stages. The idea of the first stage is to justify the neutron physical characteristics of the block-type core during burn-up with the use of the MCU-HTR code based on the Monte Carlo method. The second and the third stages are intended to study the coolant flow and the temperature condition of the reactor and the core in 3D with the required degree of detailing using the FlowVision and the ANSYS codes.

    For the purpose of carrying out the analytical studies the computational models of the reactor flow path and the fuel assembly column were developed.

    As per the results of the computational modeling the design of the support columns and the neutron physical characteristics of the fuel assembly were optimized. This results in the reduction of the total hydraulic resistance of the reactor and decrease of the maximum temperature of the fuel elements.

    The dependency of the maximum fuel temperature on the value of the power peaking factors determined by the arrangement of the absorber rods and of the compacts of burnable absorber in the fuel assembly is demonstrated.

  8. Янковская У.И., Старостенков М.Д., Медведев Н.Н., Захаров П.В.
    Методы моделирования композитов, армированных углеродными нанотрубками: обзор и перспективы
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1143-1162

    Изучение структурной характеристики композитов и наноструктур имеет фундаментальное значение в материаловедении. Теоретическое и численное моделирование и симуляция механических свойств наноструктур является основным инструментом, позволяющим проводить комплексные исследования, которые сложно проводить только экспериментально. Одним из примеров наноструктур, рассматриваемых в данной работе, являются углеродные нанотрубки (УНТ), которые обладают хорошими тепловыми и электрическими свойствами, а также низкой плотностью и высоким модулем Юнга, что делает их наиболее подходящим армирующим элементом для композитов, для потенциального применения в аэрокосмической, автомобильной, металлургической и биомедицинской промышленности. В данном обзоре мы рассмотрели методы моделирования, механические свойства и применение композитов с металлической матрицей, армированных УНТ. Также рассмотрены некоторые методы моделирования, применимые при исследованиях композитов с полимерными и металлическими матрицами. Рассмотрены такие методы, как метод градиентного спуска, метод Монте-Карло, методы молекулярной статики и молекулярной динамики. Было показано, что молекулярно-динамическое моделирование отлично подходит для создания различных систем композиционных материалов и изучения свойств композитов с металлической матрицей, армированных углеродными наноматериалами, в различных условиях. В данной работе кратко представлены наиболее часто используемые потенциалы, описывающие взаимодействие систем моделирования композитов. Правильный выбор потенциалов взаимодействия частей композитов напрямую влияет на описание изучаемого явления. Детализирована и обсуждена зависимость механических свойств композитов от объемной доли, диаметра, ориентации и количества УНТ. Показано, что объемная доля углеродных нанотрубок имеет существенное влияние на предел прочности и модуль Юнга. Диаметр УНТ оказывает большее значение на предел прочности, нежели на модуль упругости. Также приведен в пример работы, в которых изучается влияние длины УНТ на механические свойства композитов. В заключении нами предложены перспективы направления развития молекулярно-динамического моделирования в отношении композитов с металлической матрицей, армированных углеродными наноматериалами.

    Yankovskaya U.I., Starostenkov M.D., Medvedev N.N., Zakharov P.V.
    Methods for modeling composites reinforced with carbon nanotubes: review and perspectives
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1143-1162

    The study of the structural characteristics of composites and nanostructures is of fundamental importance in materials science. Theoretical and numerical modeling and simulation of the mechanical properties of nanostructures is the main tool that allows for complex studies that are difficult to conduct only experimentally. One example of nanostructures considered in this work are carbon nanotubes (CNTs), which have good thermal and electrical properties, as well as low density and high Young’s modulus, making them the most suitable reinforcement element for composites, for potential applications in aerospace, automotive, metallurgical and biomedical industries. In this review, we reviewed the modeling methods, mechanical properties, and applications of CNT-reinforced metal matrix composites. Some modeling methods applicable in the study of composites with polymer and metal matrices are also considered. Methods such as the gradient descent method, the Monte Carlo method, methods of molecular statics and molecular dynamics are considered. Molecular dynamics simulations have been shown to be excellent for creating various composite material systems and studying the properties of metal matrix composites reinforced with carbon nanomaterials under various conditions. This paper briefly presents the most commonly used potentials that describe the interactions of composite modeling systems. The correct choice of interaction potentials between parts of composites directly affects the description of the phenomenon being studied. The dependence of the mechanical properties of composites on the volume fraction of the diameter, orientation, and number of CNTs is detailed and discussed. It has been shown that the volume fraction of carbon nanotubes has a significant effect on the tensile strength and Young’s modulus. The CNT diameter has a greater impact on the tensile strength than on the elastic modulus. An example of works is also given in which the effect of CNT length on the mechanical properties of composites is studied. In conclusion, we offer perspectives on the direction of development of molecular dynamics modeling in relation to metal matrix composites reinforced with carbon nanomaterials.

  9. Жмуров А.А., Барсегов В.А., Трифонов С.В., Холодов Я.А., Холодов А.С.
    Эффективные генераторы псевдослучайных чисел при молекулярном моделировании на видеокартах
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 287-308

    Динамика Ланжевена, метод Монте-Карло и моделирование молекулярной динамики в неявном растворителе требуют больших массивов случайных чисел на каждом шаге расчета. Мы исследовали два подхода в реализации генераторов на графических процессорах. Первый реализует последовательный алгоритм генератора на каждом потоке в отдельности. Второй основан на возможности взаимодействия между потоками и реализует общий алгоритм на всех потоках в целом. Мы покажем использование этих подходов на примере алгоритмов Ran 2, Hybrid Taus и Lagged Fibonacci. Для проверки случайности полученных чисел мы использовали разработанные генераторы при моделировании динамики Ланжевена N независимых гармонических осцилляторов в термостате. Это позволило нам оценить статистические характеристики генераторов. Мы также исследовали производительность, использование памяти и ускорение, получаемое при переносе алгоритма с центрального на графический процессор.

    Zhmurov A.A., Barsegov V.A., Trifonov S.V., Kholodov Y.A., Kholodov A.S.
    Efficient Pseudorandom number generators for biomolecular simulations on graphics processors
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 287-308

    Langevin Dynamics, Monte Carlo, and all-atom Molecular Dynamics simulations in implicit solvent require a reliable source of pseudorandom numbers generated at each step of calculation. We present the two main approaches for implementation of pseudorandom number generators on a GPU. In the first approach, inherent in CPU-based calculations, one PRNG produces a stream of pseudorandom numbers in each thread of execution, whereas the second approach builds on the ability of different threads to communicate, thus, sharing random seeds across the entire device. We exemplify the use of these approaches through the development of Ran2, Hybrid Taus, and Lagged Fibonacci algorithms. As an application-based test of randomness, we carry out LD simulations of N independent harmonic oscillators coupled to a stochastic thermostat. This model allows us to assess statistical quality of pseudorandom numbers. We also profile performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU/GPU time).

    Views (last year): 11. Citations: 2 (RSCI).
  10. Представлены результаты компьютерного моделирования нестационарных температурных полей, возникающих в полярных диэлектриках, облученных сфокусированными электронными пучками средних энергий, при исследовании с помощью методик растровой электронной микроскопии. Математическая модель основана на решении многомерного эволюционного уравнения теплопроводности численным конечноэлементным методом. Аппроксимация теплового источника проведена с учетом оценки области взаимодействия электронов с веществом на основе симуляции электронных траекторий методом Монте-Карло. Разработано программное приложение в ППП Маtlab, реализующее данную модель. Приведены геометрические интерпретации и результаты расчётов, демонстрирующие особенности температурного нагрева модельных образцов электронным зондом, при заданных параметрах эксперимента и принятой аппроксимации источника.

    Maslovskaya A.G., Sivunov A.V.
    The use of finite element method for simulation of heat conductivity processes in polar dielectrics irradiated by electron bunches
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 767-780

    The paper describes the results of computer simulation of time-dependent temperature fields arising in polar dielectrics irradiated by focused electron bunches with average electron energy when analyzing with electron microscopy techniques. The mathematical model was based on solving several-dimensional nonstationary heat conduction equation with use of numerical finite element method. The approximation of thermal source was performed taking into account the estimation of initial electron distribution determined by Monte-Carlo simulation of electron trajectories. The simulation program was designed in Matlab. The geometrical modeling and calculation results demonstrated the main features of model sample heating by electron beam were presented at the given experimental parameters as well as source approximation.

    Views (last year): 5. Citations: 3 (RSCI).
Pages: previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"