All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Представление групп автоморфизмами нормальных топологических пространств
Компьютерные исследования и моделирование, 2009, т. 1, № 3, с. 243-249Доказывается, что произвольная алгебраическая группа алгебраически изоморфна полной группе автоморфизмов некоторого топологического пространства (автобиекций, сохраняющих открытые множества) с нормальным типом отделимости (Т4 + Т1). Кроме того, любое непрерывное действие группы на нормальном топологическом пространстве может быть получено как действие полной группы автоморфизмов нормального топологического пространства на его подпространстве.
Representation of groups by automorphisms of normal topological spaces
Computer Research and Modeling, 2009, v. 1, no. 3, pp. 243-249Views (last year): 1.The famous fact [3, 5] of existence of an exact representation for any finite group in the form of the full automorphism group of a finite graph was generalize in [4]. For an arbitrary group exact representation exists in the form of the full automorphism group of Kolmogorov topological space (weak type of separability T0). For a finite group a finite space may be chosen, thus allowing to restore a finite graph with the same number of vertices and having the same automorphism group. Such topological spaces and graphs are called topological imprints and graph imprints of a group (T-imprints and G-imprints, respectively). The question of maximum type of separability of a topological space for which T-imprint can be obtained for any group is open. The author proves that the problem can be solved for the class of normal topology (maximal type of separability T4+T0). Special finite T-imprint for a symmetric group may be obtained as a discrete topology; for any other group minimal cardinality of normal T-imprint is countable. There is a generic procedure to construct a T-imprint for any group. For a finite group this procedure allows finite space partitioning into subspaces having G-imprint of the original group as their connectivity graphs.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"