Результаты поиска по 'group theory':
Найдено статей: 13
  1. Koganov A.V.
    Representation of groups by automorphisms of normal topological spaces
    Computer Research and Modeling, 2009, v. 1, no. 3, pp. 243-249

    The famous fact [3, 5] of existence of an exact representation for any finite group in the form of the full automorphism group of a finite graph was generalize in [4]. For an arbitrary group exact representation exists in the form of the full automorphism group of Kolmogorov topological space (weak type of separability T0). For a finite group a finite space may be chosen, thus allowing to restore a finite graph with the same number of vertices and having the same automorphism group. Such topological spaces and graphs are called topological imprints and graph imprints of a group (T-imprints and G-imprints, respectively). The question of maximum type of separability of a topological space for which T-imprint can be obtained for any group is open. The author proves that the problem can be solved for the class of normal topology (maximal type of separability T4+T0). Special finite T-imprint for a symmetric group may be obtained as a discrete topology; for any other group minimal cardinality of normal T-imprint is countable. There is a generic procedure to construct a T-imprint for any group. For a finite group this procedure allows finite space partitioning into subspaces having G-imprint of the original group as their connectivity graphs.

    Views (last year): 1.
  2. Podlipsky O.K.
    Construction of knowledge bases by a group of experts
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 3-11

    Questions of construction of expert knowledge bases for creation of applied consulting and training systems in medicine are considered. Experience of construction of such bases and systems is described. Methods of construction of knowledge bases by a group of experts are offered.

    Views (last year): 3. Citations: 3 (RSCI).
  3. The 3rd BRICS Mathematics Conference
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016
  4. Alkousa M.S., Gasnikov A.V., Dvurechensky P.E., Sadiev A.A., Razouk L.Ya.
    An approach for the nonconvex uniformly concave structured saddle point problem
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237

    Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.

  5. Krotov K.V., Skatkov A.V.
    Optimization of task package execution planning in multi-stage systems under restrictions and the formation of sets
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 917-946

    Modern methods of complex planning the execution of task packages in multistage systems are characterized by the presence of restrictions on the dimension of the problem being solved, the impossibility of guaranteed obtaining effective solutions for various values of its input parameters, as well as the impossibility of registration the conditions for the formation of sets from the result and the restriction on the interval duration of time of the system operating. The decomposition of the generalized function of the system into a set of hierarchically interconnected subfunctions is implemented to solve the problem of scheduling the execution of task packages with generating sets of results and the restriction on the interval duration of time for the functioning of the system. The use of decomposition made it possible to employ the hierarchical approach for planning the execution of task packages in multistage systems, which provides the determination of decisions by the composition of task groups at the first level of the hierarchy decisions by the composition of task packages groups executed during time intervals of limited duration at the second level and schedules for executing packages at the third level the hierarchy. In order to evaluate decisions on the composition of packages, the results of their execution, obtained during the specified time intervals, are distributed among the packages. The apparatus of the theory of hierarchical games is used to determine complex solutions. A model of a hierarchical game for making decisions by the compositions of packages, groups of packages and schedules of executing packages is built, which is a system of hierarchically interconnected criteria for optimizing decisions. The model registers the condition for the formation of sets from the results of the execution of task packages and restriction on duration of time intervals of its operating. The problem of determining the compositions of task packages and groups of task packages is NP-hard; therefore, its solution requires the use of approximate optimization methods. In order to optimize groups of task packages, the construction of a method for formulating initial solutions by their compositions has been implemented, which are further optimized. Moreover, a algorithm for distributing the results of executing task packages obtained during time intervals of limited duration by sets is formulated. The method of local solutions optimization by composition of packages groups, in accordance with which packages are excluded from groups, the results of which are not included in sets, and packages, that aren’t included in any group, is proposed. The software implementation of the considered method of complex optimization of the compositions of task packages, groups of task packages, and schedules for executing task packages from groups (including the implementation of the method for optimizing the compositions of groups of task packages) has been performed. With its use, studies of the features of the considered planning task are carried out. Conclusion are formulated concerning the dependence of the efficiency of scheduling the execution of task packages in multistage system under the introduced conditions from the input parameters of the problem. The use of the method of local optimization of the compositions of groups of task packages allows to increase the number of formed sets from the results of task execution in packages from groups by 60% in comparison with fixed groups (which do not imply optimization).

  6. Alpeeva L.E., Tsybulin V.G.
    The cosymmetric approach to the analysis of spatial structure of populations with amount of taxis
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 661-671

    We consider a mathematical model describing the competition for a heterogeneous resource of two populations on a one-dimensional area. Distribution of populations is governed by diffusion and directed migration, species growth obeys to the logistic law. We study the corresponding problem of nonlinear parabolic equations with variable coefficients (function of a resource, parameters of growth, diffusion and migration). Approach on the theory the cosymmetric dynamic systems of V. Yudovich is applied to the analysis of population patterns. Conditions on parameters for which the problem under investigation has nontrivial cosymmetry are analytically derived. Numerical experiment is used to find an emergence of continuous family of steady states when cosymmetry takes place. The numerical scheme is based on the finite-difference discretization in space using the balance method and integration on time by Runge-Kutta method. Impact of diffusive and migration parameters on scenarios of distribution of populations is studied. In the vicinity of the line, corresponding to cosymmetry, neutral curves for diffusive parameters are calculated. We present the mappings with areas of diffusive parameters which correspond to scenarios of coexistence and extinction of species. For a number of migration parameters and resource functions with one and two maxima the analysis of possible scenarios is carried out. Particularly, we found the areas of parameters for which the survival of each specie is determined by initial conditions. It should be noted that dynamics may be nontrivial: after starting decrease in densities of both species the growth of only one population takes place whenever another specie decreases. The analysis has shown that areas of the diffusive parameters corresponding to various scenarios of population patterns are grouped near the cosymmetry lines. The derived mappings allow to explain, in particular, effect of a survival of population due to increasing of diffusive mobility in case of starvation.

    Views (last year): 2. Citations: 1 (RSCI).
  7. We build new tests which permit to increase the human capacity for the information processing by the parallel execution of the several logic operations of prescribed type. For checking of the causes of the capacity increasing we develop the check tests on the same logic operations class in which the parallel organization of the calculations is low-effectively. We use the apparatus of the universal algebra and automat theory. This article is the extension of the cycle of the work, which investigates the human capacity for the parallel calculations. The general publications on this theme content in the references. The tasks in the described tests may to define in the form of the calculation of the result in the sequence of the same type operations from some algebra. If this operation is associative then the parallel calculation is effectively by successful grouping of process. In Theory of operations that is the using the simultaneous work several processors. Each processor transforms in the time unit the certain known number of the elements of the input date or the intermediate results (the processor productivity). Now it is not known what kind elements of date are using by the brain for the logical or mathematical calculation, and how many elements are treating in the time units. Therefore the test contains the sequence of the presentations of the tasks with different numbers of logical operations in the fixed alphabet. That is the measure of the complexity for the task. The analysis of the depending of the time for the task solution from the complexity gives the possible to estimate the processor productivity and the form of the calculate organization. For the sequence calculations only one processor is working, and the time of solution is a line function of complexity. If the new processors begin to work in parallel when the complexities of the task increase than the depending of the solution time from complexity is represented by the curve which is convex at the bottom. For the detection of situation when the man increases the speed of the single processor under the condition of the increasing complexity we use the task series with similar operations but in the no associate algebra. In such tasks the parallel calculation is little affectivity in the sense of the increasing efficiency by the increasing the number of processors. That is the check set of the tests. In article we consider still one class of the tests, which are based on the calculation of the trajectory of the formal automat state if the input sequence is determined. We investigate the special class of automats (relay) for which the construction affect on the affectivity of the parallel calculations of the final automat state. For all tests we estimate the affectivity of the parallel calculation. This article do not contained the experiment results.

    Views (last year): 14. Citations: 1 (RSCI).
  8. Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  9. Shokirov F.S.
    Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787

    By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.

    Views (last year): 6.
  10. Zenyuk D.A., Malinetsky G.G., Faller D.S.
    Simulation of corruption in hierarchical systems
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 321-329

    Simulation model of corruption in hierarchical systems which takes into account individual strategies of elements and collective behavior of large groups is proposed. Evolution of various characteristics like level of corruption or ratio of corrupted elements and their dependence on external parameters are discussed. The effectiveness of various anticorruptional strategies is examined by means of numeric analysis.

    Views (last year): 8. Citations: 11 (RSCI).
Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"