Результаты поиска по 'анализ сигналов':
Найдено статей: 21
  1. В работе рассматриваются особенности статистического распределения Райса, обусловливающие возможность его эффективного применения при решении задач высокоточных фазовых измерений в оптике. Дается строгое математическое доказательство свойства устойчивости статистического распределения Райса на примере рассмотрения разностного сигнала, а именно: доказано, что сумма или разность двух райсовских сигналов также подчиняются распределению Райса. Кроме того, получены формулы для параметров райсовского распределения результирующего суммарного или разностного сигнала. На основании доказанного свойства устойчивости распределения Райса в работе разработан новый оригинальный метод высокоточного измерения разности фаз двух квазигармонических сигналов. Этот метод базируется на статистическом анализе измеренных выборочных данных для обоих амплитуд сигналов и амплитуды третьего сигнала, представляющего собой разность сопоставляемых по фазе сигналов. Искомый фазовый сдвиг двух квазигармонических сигналов определяется исходя из геометрических соображений как угол треугольника, сформированного восстановленными на фоне шума значениями амплитуд трех упомянутых сигналов. Тем самым предлагаемый метод измерения фазового сдвига с использованием разностного сигнала основан исключительно на амплитудных измерениях, что существенно снижает требования к оборудованию и облегчает реализацию метода на практике. В работе представлены как строгое математическое обоснование нового метода измерения разности фаз сигналов, так и результаты его численного тестирования. Разработанный метод высокоточных фазовых измерений может эффективно применяться для решения широкого круга задач в различных областях науки и техники, в частности в дальнометрии, в системах коммуникации, навигации и т. п.

    The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.

  2. Яковлева Т.В.
    Статистическое распределение фазы квазигармонического сигнала: основы теории и компьютерное моделирование
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 287-297

    В работе представлены результаты фундаментального исследования, направленного на теоретическое изучение и компьютерное моделирование свойств статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Методами математического анализа получены в явном виде формулы для основных характеристик данного распределения — функции распределения, функции плотности вероятности, функции правдоподобия. В результате проведенного компьютерного моделирования проанализированы зависимости данных функций от параметров распределения фазы. В работе разработаны и обоснованы методы оценивания параметров распределения фазы, несущих информацию об исходном, не искаженном шумом сигнале. Показано, что задача оценивания исходного значения фазы квазигармонического сигнала может эффективно решаться простым усреднением результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать метод максимума правдоподобия. В работе представлены графические материалы, полученные путем компьютерного моделирования основных характеристик исследуемого статистического распределения фазы. Существование и единственность максимума функции правдоподобия позволяют обосновать возможность и эффективность решения задачи оценивания уровня сигнала относительно уровня шума методом максимума правдоподобия. Развиваемый в работе метод оценивания уровня незашумленного сигнала относительно уровня шума, т.е. параметра, характеризующего интенсивность сигнала, на основании измерений фазы сигнала является оригинальным, принципиально новым, открывающим перспективы использования фазовых измерений как инструмента анализа стохастических данных. Данное исследование является значимым для решения задач расчета фазы и уровня сигнала методами статистической обработки выборочных фазовых измерений. Предлагаемые методы оценивания параметров распределения фазы квазигармонического сигнала могут использоваться при решении различных научных и прикладных задач, в частности, в таких областях, как радиофизика, оптика, радиолокация, радионавигация, метрология.

    Yakovleva T.V.
    Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297

    The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.

  3. В работе дается обзор существующих методов обработки сигналов в условиях применения статистической модели Райса. Рассмотрены основные направления развития, существующие ограничения и возможности совершенствования методов решения задачи шумоподавления и фильтрации анализируемых сигналов на примере магнитно-резонансной визуализации. Развита концепция нового подхода к решению задачи одновременного определения основных статистических параметров райсовского случайного сигнала на основе метода моментов в двух вариантах его осуществления. Проведено компьютерное моделирование и проведен сравнительный анализ полученных численных результатов.

    Yakovleva T.V.
    Review of MRI processing techniques and elaboration of a new two-parametric method of moments
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 231-244

    The paper provides a review of the existing methods of signals’ processing within the conditions of the Rice statistical model applicability. There are considered the principle development directions, the existing limitations and the improvement possibilities concerning the methods of solving the tasks of noise suppression and analyzed signals’ filtration by the example of magnetic-resonance visualization. A conception of a new approach to joint calculation of Rician signal’s both parameters has been developed based on the method of moments in two variants of its implementation. The computer simulation and the comparative analysis of the obtained numerical results have been conducted.

    Citations: 10 (RSCI).
  4. Яковлева Т.В.
    Определение параметров сигнала и шума при анализе райсовских данных методом моментов низших нечетных порядков
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 717-728

    В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях статистического распределения Райса посредством метода моментов, основанного на анализе данных для начальных моментов 1-го и 3-го порядков случайной райсовской величины. Получена в явном виде система уравнений для искомых параметров сигнала и шума. В предельном случае малой величины отношения сигнала к шуму получены аналитические формулы, позволяющие рассчитать искомые параметры задачи без необходимости численного решения уравнений. Развитый в работе метод обеспечивает эффективное разделение информативной и шумовой компонент анализируемых данных в отсутствие каких-либо априорных предположений, лишь на основе обработки результатов выборочных измерений сигнала. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации и т. д. Как показали результаты исследований, решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи, решаемой в предположении априорной известности второго параметра. В работе приведены результаты компьютерного моделирования разработанного метода. Результаты численного расчета параметров сигнала и шума разработанным методом подтверждают его эффективность. Проведено сопоставление точности определения искомых параметров развитым в работе методом и ранее разработанным вариантом метода моментов, основанным на обработке измеренных данных для низших четных моментов анализируемого сигнала.

    Yakovleva T.V.
    Signal and noise parameters’ determination at rician data analysis by method of moments of lower odd orders
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 717-728

    The paper develops a new mathematical method of the joint signal and noise parameters determination at the Rice statistical distribution by method of moments based upon the analysis of data for the 1-st and the 3-rd raw moments of the random rician value. The explicit equations’ system have been obtained for required parameters of the signal and noise. In the limiting case of the small value of the signal-to-noise ratio the analytical formulas have been derived that allow calculating the required parameters without the necessity of solving the equations numerically. The technique having been elaborated in the paper ensures an efficient separation of the informative and noise components of the data to be analyzed without any a-priori restrictions, just based upon the processing of the results of the signal’s sampled measurements. The task is meaningful for the purposes of the rician data processing, in particular in the systems of magnetic-resonance visualization, in ultrasound visualization systems, at the optical signals’ analysis in range measuring systems, in radio location, etc. The results of the investigation have shown that the two parameter task solution of the proposed technique does not lead to the increase in demanded volume of computing resources compared with the one parameter task being solved in approximation that the second parameter of the task is known a-priori There are provided the results of the elaborated technique’s computer simulation. The results of the signal and noise parameters’ numerical calculation have confirmed the efficiency of the elaborated technique. There has been conducted the comparison of the accuracy of the sought-for parameters estimation by the technique having been developed in this paper and by the previously elaborated method of moments based upon processing the measured data for lower even moments of the signal to be analyzed.

    Views (last year): 10. Citations: 1 (RSCI).
  5. Масловский А.Ю., Суменков О.Ю., Воркутов Д.А., Чуканов С.В.
    Применение дискретных методов многокритериальной оптимизации для построения модели цифрового предискажения сигнала усилителя мощности базовой станции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 281-300

    Осуществление передачи сигналов сотовой связи — одна из ключевых задач современного мира. Для улучшения сигнала передаваемой информации необходимо чтобы сигнал не искажался при усилении мощности на базовой станции сотовой связи. Поставленную задачу можно решать самыми различными способами, однако одним из самых простых решений, которое широко используется в индустрии, является добавление нелинейных искажений, позволяющих линеаризовать работу усилителя и устранять интермодуляционные искажения в областях спектра, не используемых для передачи сигнала. В силу большой нагрузки и работы в реальном времени модель, осуществляющая данные искажения, не должна быть громоздкой и иметь большое количество адаптируемых параметров. В данной статье производится анализ современных работ по теме многокритериальной оптимизации и построения моделей для решения задачи предискажения сигнала при помощи данных методов. В статье показывается, что возможно найти структуру (сохранив производительность) и имеющую меньшее количество используемых ресурсов, быстрее, чем полный перебор по всему словарю из заданных параметров.

    Maslovskiy A.Y., Sumenkov O.Y., Vorkutov D.A., Chukanov S.V.
    Application of discrete multicriteria optimization methods for the digital predistortion model design
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 281-300

    In this paper, we investigate different alternative ideas for the design of digital predistortion models for radiofrequency power amplifiers. When compared to the greedy search algorithm, these algorithms allow a faster identification of the model parameters combination while still performing reasonably well. For the subsequent implementation, different metrics of model costs and score results in the process of optimization enable us to achieve sparse selections of the model, which balance the model accuracy and model resources (according to the complexity of implementation). The results achieved in the process of simulations show that combinations obtained with explored algorithms show the best performance after a lower number of simulations.

  6. Любушин А.А., Фарков Ю.А.
    Синхронные компоненты финансовых временных рядов
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655

    В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.

    Lyubushin A.A., Farkov Y.A.
    Synchronous components of financial time series
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 639-655

    The article proposes a method of joint analysis of multidimensional financial time series based on the evaluation of the set of properties of stock quotes in a sliding time window and the subsequent averaging of property values for all analyzed companies. The main purpose of the analysis is to construct measures of joint behavior of time series reacting to the occurrence of a synchronous or coherent component. The coherence of the behavior of the characteristics of a complex system is an important feature that makes it possible to evaluate the approach of the system to sharp changes in its state. The basis for the search for precursors of sharp changes is the general idea of increasing the correlation of random fluctuations of the system parameters as it approaches the critical state. The increments in time series of stock values have a pronounced chaotic character and have a large amplitude of individual noises, against which a weak common signal can be detected only on the basis of its correlation in different scalar components of a multidimensional time series. It is known that classical methods of analysis based on the use of correlations between neighboring samples are ineffective in the processing of financial time series, since from the point of view of the correlation theory of random processes, increments in the value of shares formally have all the attributes of white noise (in particular, the “flat spectrum” and “delta-shaped” autocorrelation function). In connection with this, it is proposed to go from analyzing the initial signals to examining the sequences of their nonlinear properties calculated in time fragments of small length. As such properties, the entropy of the wavelet coefficients is used in the decomposition into the Daubechies basis, the multifractal parameters and the autoregressive measure of signal nonstationarity. Measures of synchronous behavior of time series properties in a sliding time window are constructed using the principal component method, moduli values of all pairwise correlation coefficients, and a multiple spectral coherence measure that is a generalization of the quadratic coherence spectrum between two signals. The shares of 16 large Russian companies from the beginning of 2010 to the end of 2016 were studied. Using the proposed method, two synchronization time intervals of the Russian stock market were identified: from mid-December 2013 to mid- March 2014 and from mid-October 2014 to mid-January 2016.

    Views (last year): 12. Citations: 2 (RSCI).
  7. Темлякова Е.А., Джелядин Т.Р., Камзолова С.Г., Сорокин А.А.
    Система хранения профилей физических свойств ДНК на примере промоторов Escherichia coli
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 443-450

    В данной работе нами представлена база данных, спроектированная для хранения профилей физических свойств вдоль двойной спирали ДНК, и продемонстрировано ее использование для хранения, поиска и анализа промоторных последовательностей E. coli. Отличительным свойством предложенной базы данных является то, что весь профиль хранится как единый объект, который с точки зрения СУБД полностью подобен строке или числу. Такие объекты СУБД может сравнивать друг с другом и осуществлять быструю выборку на основании индексов. В базу данных загружена информация о 1227 известных промоторах. Для каждого промотора сохранена нуклеотидная последовательность, а также вычислен и загружен в базу профиль электростатического потенциала промоторной ДНК. Кроме того, каждый промотор связан с генами, транскипцию которых он регулирует, а также с записями о сайтах посадки транскрипционных факторов, влияющих на функционирование промотора. Организован доступ к базе данных через интернет; исходные коды доступны для скачивания, а содержимое базы данных может быть выслано авторами по запросу.

    Temlyakova E.A., Dzhelyadin T.R., Kamzolova S.G., Sorokin A.A.
    System to store DNA physical properties profiles with application to the promoters of Escherichia coli

    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 443-450

    Database to store, search and retrieve DNA physical properties profiles has been developed and its use for analysis of E. coli promoters has been demonstrated. Unique feature of the database is in its ability to handle whole profile as single internal object type in a way similar to integers or character strings. To demonstrate utility of such database it was populated with data of 1227 known promoters, their nucleotide sequence, profile of electrostatic potential, transcription factor binding sites. Each promoter is also connected to all genes, whose transcription is controlled by that promoter. Content of the database is available for search via web interface. Source code of profile datatype and library to work with it from R/Bioconductor are available from the internet, dump of the database is available from authors by request.

    Views (last year): 3.
  8. Кузенков Н.П., Логинов В.М.
    Использование метода нормированного размаха при анализе речевых патологий неврологического генеза
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 775-791

    На основании модификации алгоритма вычисления нормированного размаха предлагается способ определения показателя Хёрста, а также оценки характерного времени, в течение которого показатель Хёрста остается постоянным. Разработан подход к упрощению автоматизации вычисления показателя Хёрста и увеличения его точности. Показатель Хёрста и характерное время вычислены для рядов мощностей речевых сигналов с различными моторными патологиями (афазии, дизартрии). Проведен их статистический анализ, произведена оценка корреляции между показателем Хёрста и характерным временем. Обсуждается возможность использования результатов в диагностике речевых патологий.

    Kuzenkov N.P., Loginov V.M.
    R/S method application in neurological speech disorders analyses
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 775-791

    Based on modified rescaled range scale computation algorithm, the technique of Hurst exponent and its characteristic time estimation is proposed. The approach of increase the accuracy and simplification automatic Hurst exponent calculation is developed. The Hurst exponent and characteristic time is calculated for power time sets of speech signals with various motor pathologies (aphasias and dysarthrias). Results is statistically analyzed, the correlation between Hurst exponent and characteristic time is estimated.

    Views (last year): 2. Citations: 2 (RSCI).
  9. В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях распределения Райса, основанный на комбинировании метода максимума правдоподобия и метода моментов. При этом определение искомых параметров задачи осуществляется посредством обработки выборочных измерений амплитуды анализируемого райсовского сигнала. Получена система уравнений для искомых параметров сигнала и шума, а также представлены результаты численных расчетов, подтверждающие эффективность предлагаемого метода. Показано, что решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи. В частном случае малой величины отношения сигнала к шуму получено аналитическое решение задачи. В работе проведено исследование зависимости погрешности и разброса расчетных данных для искомых параметров от количества измерений в экспериментальной выборке. Как показали численные эксперименты, величина разброса расчетных значений искомых параметров сигнала и шума, полученных предлагаемым методом, изменяется обратно пропорционально количеству измерений в выборке. Проведено сопоставление точности оценивания искомых райсовских параметров предлагаемым методом и ранее развитым вариантом метода моментов. Решаемая в работе задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации, а также при решении многих других научных и прикладных задач, адекватно описываемых статистической моделью Райса.

    The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.

    Views (last year): 11.
  10. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

    Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

Pages: previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"