Результаты поиска по 'аналитическая модель':
Найдено статей: 106
  1. Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.

    An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.

  2. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

    Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  3. Компаниец Л.А., Питальская О.С.
    Точные решения модели Экмана трехмерного ветрового движения однородной жидкости с учетом геострофической составляющей
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 57-66

    Первое решение для ветрового движения однородной жидкости было найдено в 1905 г. Экманом и представляло собой сумму двух слагаемых: дрейфовой составляющей, определяемой напряжением ветра, и геострофической, определяемой наклоном свободной поверхности. Дрейфовая составляющая определяется конкретной формулой и легко поддается анализу. Нахождение геострофической составляющей требует решения уравнения эллиптического типа в области, ограниченной береговой линией, и представляет собой более сложную задачу. В данной работе приводятся примеры областей и ветровых напряжений, когда уравнения для нахождения геострофической составляющей решаются аналитически.

    Kompaniets L.A., Pitalskaya O.S.
    Exact solutions of Ekman’s model for three-dimensional wind-induced flow of homogeneous fluid with geostrophic current
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 57-66

    The first solution for wind-induced flow of homogeneous fluid was found in 1905 by Ekman and it involved the sum of two components: the drift current determined by wind stress and the geostrophic current determined by slope of the free surface. Drift current is defined by the specific formula and can be easily analyzed. In order to find the geostrophic current it is necessary to solve an elliptic type equation in the area bounded by coastline and it is a more difficult problem. In this paper examples of areas and wind stresses are given for the case when the equations for finding the geostrophic current are solved analytically.

    Views (last year): 2.
  4. Апонин Ю.М., Апонина Е.А.
    Принцип инвариантности Ла-Салля и математические модели эволюции микробных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 177-190

    Построена математическая модель эволюции микробных популяций при длительном непрерывном культивировании на протоке. Модель представляет собой обобщение целого ряда известных математических моделей эволюции, в которых учитываются такие факторы генетической изменчивости как хромосомные мутации, мутации плазмидных генов, перенос плазмид между клетками микроорганизмов, потери плазмид при делении клеток и др. Для общей модели эволюции построена функция Ляпунова и на основании теоремы Ла-Салля доказано существование в пространстве состояний математической модели ограниченного, положительно инвариантного и глобально притягивающего множества. Дано аналитическое описание этого множества. Обсуждаются перспективы применения численных методов для оценки числа, местоположения и последующего исследования предельных множеств в математических моделях эволюции на протоке.

    Aponin Yu.M., Aponina E.A.
    The invariance principle of La-Salle and mathematical models for the evolution of microbial populations
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 177-190

    A mathematical model for the evolution of microbial populations during prolonged cultivation in a chemostat has been constructed. This model generalizes the sequence of the well-known mathematical models of the evolution, in which such factors of the genetic variability were taken into account as chromosomal mutations, mutations in plasmid genes, the horizontal gene transfer, the plasmid loss due to cellular division and others. Liapunov’s function for the generic model of evolution is constructed. The existence proof of bounded, positive invariant and globally attracting set in the state space of the generic mathematical model for the evolution is presented because of the application of La-Salle’s theorem. The analytic description of this set is given. Numerical methods for estimate of the number of limit sets, its location and following investigation in the mathematical models for evolution are discussed.

    Views (last year): 8. Citations: 3 (RSCI).
  5. Черемисина Е.Н., Сеннер А.Е.
    Применение ГИС ИНТЕГРО в задачах поиска месторождений нефти и газа
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 439-444

    В основу системы интегрированной интерпретации геофизических данных при изучении глубинного строения Земли положена система ГИС ИНТЕГРО, являющаяся геоинформационной системой функционирования разнообразных вычислительных и аналитических приложений при решении различных геологических задач. ГИС ИНТЕГРО включает в себя многообразные интерфейсы, позволяющие изменять форму представления данных (растр, вектор, регулярная и нерегулярная сеть наблюдений), блок преобразования картографических проекций, а также прикладные блоки, включающие блок интегрированного анализа данных и решения прогнозно-диагностических задач.

    Методический подход базируется на интеграции и комплексном анализе геофизических данных по региональным профилям, геофизических потенциальных полей и дополнительной геологической информации на изучаемую территорию.

    Аналитическое обеспечение включает пакеты трансформаций, фильтрации, статистической обработки полей, расчета характеристик, выделения линеаментов, решения прямых и обратных задач, интегрирования геоинформации.

    Технология и программно-аналитическое обеспечение апробировались при решении задач тектонического районирования в масштабах 1:200000, 1:1000000 в Якутии, Казахстане, Ростовской области, изучения глубинного строения по региональным профилям 1:ЕВ, 1-СБ, 2-СБ, 3-СБ и 2-ДВ, прогноза нефтегазоносности в районах Восточной Сибири, Бразилии.

    Cheremisina E.N., Senner A.E.
    The use of GIS INTEGRO in searching tasks for oil and gas deposits
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 439-444

    GIS INTEGRO is the geo-information software system forming the basis for the integrated interpretation of geophysical data in researching a deep structure of Earth. GIS INTEGRO combines a variety of computational and analytical applications for the solution of geological and geophysical problems. It includes various interfaces that allow you to change the form of representation of data (raster, vector, regular and irregular network of observations), the conversion unit of map projections, application blocks, including block integrated data analysis and decision prognostic and diagnostic tasks.

    The methodological approach is based on integration and integrated analysis of geophysical data on regional profiles, geophysical potential fields and additional geological information on the study area. Analytical support includes packages transformations, filtering, statistical processing, calculation, finding of lineaments, solving direct and inverse tasks, integration of geographic information.

    Technology and software and analytical support was tested in solving problems tectonic zoning in scale 1:200000, 1:1000000 in Yakutia, Kazakhstan, Rostov region, studying the deep structure of regional profiles 1:S, 1-SC, 2-SAT, 3-SAT and 2-DV, oil and gas forecast in the regions of Eastern Siberia, Brazil.

    The article describes two possible approaches of parallel calculations for data processing 2D or 3D nets in the field of geophysical research. As an example presented realization in the environment of GRID of the application software ZondGeoStat (statistical sensing), which create 3D net model on the basis of data 2d net. The experience has demonstrated the high efficiency of the use of environment of GRID during realization of calculations in field of geophysical researches.

    Views (last year): 4.
  6. Жуков Б.А., Щукина Н.А.
    Приближенная модель плоских статических задач нелинейной упругости
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 889-896

    Работа посвящена построению приближенной математической модели нелинейной теории упругости для плоской деформации. В качестве метода, реализующего символьные вычисления, применяется метод эффектов третьего порядка. Предложенная модель позволяет использовать методы линейной теории упругости для решения конкретных задач. Данный метод является пригодным для автоматического получения аналитических решений плоских задач нелинейной теории упругости о концентрации напряжений около отверстий на базе математического пакета Maple. На примере треугольного контура исследован нелинейный эффект зависимости коэффициента концентрации напряжений от уровня внешней нагрузки.

    Zhukov B.A., Shchukina N.A.
    The approximate model of plane static problems of the nonlinear elasticity theory
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 889-896

    This article is dedicated to the construction of the approximate mathematical model of the nonlinear elasticity theory for plane strain state. The third order effects method applied to symbolic computing. There three boundary value problems for the first, the second and the third order effects has been obtained within this method, which gets ability to use well-elaborated methods of the linear elasticity theory for the solution of specific problems. This method can be applied for analytical solving of plane problems of nonlinear elasticity theory of stress concentration around holes in mathematical package Maple. Considered example of the triangular hole. The influence of external loads on the stress concentration factor.

    Views (last year): 4. Citations: 2 (RSCI).
  7. Крат Ю.Г., Потапов И.И.
    Устойчивость дна в напорных каналах
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068

    В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.

    Krat Y.G., Potapov I.I.
    Bottom stability in closed conduits
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068

    In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.

    Views (last year): 1. Citations: 2 (RSCI).
  8. Губанов С.М., Дурновцев М.И., Картавых А.А., Крайнов А.Ю.
    Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529

    В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.

    Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Views (last year): 3. Citations: 1 (RSCI).
  9. Разные варианты моделей переключающегося режима воспроизводства описывают совокупность взаимодействующих друг с другом макроэкономических производственных подсистем, каждой из которых соответствует свое домашнее хозяйство. Эти подсистемы различаются между собой по возрасту используемого ими основного капитала, поскольку они по очереди останавливают производство продукции для его обновления собственными силами (для ремонта оборудования и для привнесения инноваций, увеличивающих эффективность производства). Это принципиально отличает данный тип моделей от моделей, описывающих режим совместного воспроизводства, при котором обновление основного капитала и производство продукта происходят одновременно. Модели переключающегося режима воспроизводства позволяют наглядно описать механизмы таких явлений, как денежные кругообороты и амортизация, а также описывать различные виды монетарной политики, позволяют по-новому интерпретировать механизмы экономического роста. В отличие от многих других макроэкономических моделей модели этого класса, в которых конкурирующие между собой подсистемы поочередно приобретают преимущество над остальными за счет обновления, принципиально не равновесны. Изначально они были описаны в виде систем обыкновенных дифференциальных уравнений со скачкообразно меняющимися коэффициентами. В численных расчетах, проводившихся для этих систем, в зависимости от значений параметров и начальных условий была выявлена как регулярная, так и нерегулярная динамика. В данной работе показано, что простейшие варианты этой модели без использования дополнительных приближений могут быть представлены в дискретной форме (в виде нелинейных отображений) при различных вариантах (непрерывных и дискретных) финансовых потоков между подсистемами (интерпретируемых как зарплаты и субсидии). Эта форма представления более удобна для получения строгих аналитических результатов, а также для проведения более экономных и точных численных расчетов. В частности, ее использование позволило определить начальные условия, соответствующие скоординированному, устойчивому экономическому росту без систематического отставания в производительности одних подсистем от других.

    Different versions of the shifting mode of reproduction models describe set of the macroeconomic production subsystems interacting with each other, to each of which there corresponds the household. These subsystems differ among themselves on age of the fixed capital used by them as they alternately stop production for its updating by own forces (for repair of the equipment and for introduction of the innovations increasing production efficiency). It essentially distinguishes this type of models from the models describing the mode of joint reproduction in case of which updating of fixed capital and production of a product happen simultaneously. Models of the shifting mode of reproduction allow to describe mechanisms of such phenomena as cash circulations and amortization, and also to describe different types of monetary policy, allow to interpret mechanisms of economic growth in a new way. Unlike many other macroeconomic models, model of this class in which the subsystems competing among themselves serially get an advantage in comparison with the others because of updating, essentially not equilibrium. They were originally described as a systems of ordinary differential equations with abruptly varying coefficients. In the numerical calculations which were carried out for these systems depending on parameter values and initial conditions both regular, and not regular dynamics was revealed. This paper shows that the simplest versions of this model without the use of additional approximations can be represented in a discrete form (in the form of non-linear mappings) with different variants (continuous and discrete) financial flows between subsystems (interpreted as wages and subsidies). This form of representation is more convenient for receipt of analytical results as well as for a more economical and accurate numerical calculations. In particular, its use allowed to determine the entry conditions corresponding to coordinated and sustained economic growth without systematic lagging in production of a product of one subsystems from others.

    Views (last year): 1. Citations: 4 (RSCI).
  10. Потапов И.И., Снигур К.С.
    О решении уравнения Экснера для дна, имеющего сложную морфологию
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 449-461

    Для математического моделирования несвязного речного дна широко используется уравнение Экснера совместно с феноменологическими моделями транспорта наносов. В случае моделирования эволюции дна простой геометрической формы такой подход позволяет получить точное решение без каких-либо затруднений. Однако в случае моделирования неустойчивого дна сложной геометрической формы в ряде случаев возникает численная неустойчивость, которую сложно отделить от естественной физической неустойчивости.

    В настоящей работе выполнен анализпр ичин возникновения численной неустойчивости при моделировании эволюции дна сложной геометрической формы с помощью уравнения Экснера и феноменологических моделей расхода наносов. Показано, что при численном решении уравнения Экснера, замкнутого феноменологической моделью транспорта наносов, могут реализовываться два вида неопределенности. Первая неопределенность возникает при условии транзита наносов над областью дна, где деформаций не происходит. Вторая неопределенность возникает в точках экстремума донного профиля, когда расход наносов меняется, а дно остается неизменным. Авторами выполнено замыкание уравнения Экснера с помощью аналитической модели транспорта наносов, которое позволило преобразовать уравнение Экснера к уравнению параболического типа. Анализполу ченного уравнения показал, что его численное решение не приводит к возникновению вышеуказанных неопределенностей. Параболический вид преобразованного уравнения Экснера позволяет применить для его решения эффективную и устойчивую неявную центрально-разностную схему.

    Выполнено решение модельной задачи об эволюции дна при периодическом распределении придонного касательного напряжения. Для численного решения задачи использовалась явная центрально-разностная схема с применением и без применения метода фильтрации и неявная центрально-разностная схема. Показано, что явная центрально-разностная схема теряет устойчивость в области экстремума донного профиля. Использование метода фильтрации привело к повышенной диссипативности решения. Решение с помощью неявной центрально-разностной схемы соответствует закону распределения придонного касательного напряжения и является устойчивым во всей расчетной области.

    Potapov I.I., Snigur K.S.
    Solving of the Exner equation for morphologically complex bed
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 449-461

    The Exner equation in conjunction phenomenological sediment transport models is widely used for mathematical modeling non-cohesive river bed. This approach allows to obtain an accurate solution without any difficulty if one models evolution of simple shape bed. However if one models evolution of complex shape bed with unstable soil the numerical instability occurs in some cases. It is difficult to detach this numerical instability from the natural physical instability of bed.

    This paper analyses the causes of numerical instability occurring while modeling evolution of complex shape bed by using the Exner equation and phenomenological sediment rate models. The paper shows that two kinds of indeterminateness may occur while solving numerically the Exner equation closed by phenomenological model of sediment transport. The first indeterminateness occurs in the bed area where sediment transport is transit and bed is not changed. The second indeterminateness occurs at the extreme point of bed profile when the sediment rate varies and the bed remains the same. Authors performed the closure of the Exner equation by the analytical sediment transport model, which allowed to transform the Exner equation to parabolic type equation. Analysis of the obtained equation showed that it’s numerical solving does not lead to occurring of the indeterminateness mentioned above. Parabolic form of the transformed Exner equation allows to apply the effective and stable implicit central difference scheme for this equation solving.

    The model problem of bed evolution in presence of periodic distribution of the bed shear stress is carried out. The authors used the explicit central difference scheme with and without filtration method application and implicit central difference scheme for numerical solution of the problem. It is shown that the explicit central difference scheme is unstable in the area of the bed profile extremum. Using the filtration method resulted to increased dissipation of the solution. The solution obtained by using the implicit central difference scheme corresponds to the distribution law of bed shear stress and is stable throughout the calculation area.

    Views (last year): 10.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"