All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
О механизме переключения стоячей волны в бегущую, сопровождающегося делением длины волны пополам
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 673-679В данной работе предложен возможный механизм перехода из режима стоячих волн с длиной волны λSW в режим бегущих волн с половинной длиной волны: λTW ≅λSW / 2. Такой переход был обнаружен в пространственно распределенной реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT [Kaminaga el al., 2005]. Задача решалась в пространственно одномерном случае с использованием аппарата амплитудных уравнений типа Гинзбурга–Ландау. Показано, что переход возможен при выполнении определенных условий. Выведены условия на силы связи между взаимодействующими модами, при выполнении которых в модели реализуется сценарий перехода от стоячей к бегущей волне половинного периода, наблюдаемый в эксперименте. Результат теоретического анализа подтверждается численным моделированием.
About the mechanism of switching between standing and traveling waves is accompanied by a halving of the wavelength
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 673-679Views (last year): 2. Citations: 1 (RSCI).We suggest a possible mechanism for the transition from standing waves with a wavelength λSW to traveling waves with a half wavelength: λTW ≅λSW / 2. This phenomenon was observed in the Belousov–Zhabotinsky reaction dispersed in a water-in-oil aerosol OT/Span-20 microemulsion. The problem is solved in a spatially one-dimensional case using amplitude equations approach. We demonstrate that a transition is possible under certain conditions. We obtain conditions for the mode coupling strength parameters, under which the scenario of transition from a standing wave to a half-period traveling wave, observed experimentally, is realized. The result of theoretical analysis is confirmed by numerical simulations.
- Views (last year): 1.
- Views (last year): 3.
-
Исследование механизмов формирования сегментированных волн в активных средах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 533-542В данной работе предложены три возможных механизма формирования сегментированных волн и спиралей. Структуры такого рода были обнаружены в реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT. Первый механизм обусловлен взаимодействием двух подсистем, одна из которых возбудима, а другая неустойчива по Тьюрингу. Показано, как под воздействием поперечной неустойчивости из однородной гладкой спиральной волны формируется сегментированная спираль. В зависимости от свойств подсистем мы демонстрируем несколько различных по виду и форме сегментированных спиральных волн. В качестве второго механизма мы предлагаем «дробление» бегущей волны в окрестности бифуркационной точки коразмерности два, в которой пересекаются границы тьюринговской и волновой неустойчивостей. Наконец, мы показываем, что сегментированные волны могут возникать в некоторых простых двухкомпонентных моделях типа «реакция–диффузия», имеющих более одного стационарного состояния, в частности, в модели ФитцХью–Нагумо.
On the mechanisms for formation of segmented waves in active media
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 533-542Citations: 3 (RSCI).We suggest three possible mechanisms for formation of segmented waves and spirals. These structures were observed in the Belousov–Zhabotinsky reaction dispersed in a water-in-oil aerosol OT microemulsion. The first mechanism is caused by interaction of two coupled subsystems, one of which is excitable, and the other one has Turing instability depending on the parameters. It is shown that, segmented spirals evolve from ordinary smooth spirals as a result of the transverse Turing instability. We demonstrate that depending on the properties of subsystems different segmented spirals emerge. For the second mechanism we suggest "splitting" of the traveling wave in the vicinity of the bifurcation point of codimension-2, where the boundaries of the Turing and wave instabilities intersect. Finally we show that the segmented waves can emerge in some simple two-component reaction-diffusion models having more than one steady state, particularly in a FitzHugh–Nagumo model.
-
Особенности численных решений некоторых задач для кноидальной волны как периодического решения уравнения Кортевега – де Фриза
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 885-901В данной статье рассмотрены особенности численных решений некоторых задач для кноидальных волн, которые являются периодическими решениями классического уравнения Кортевега – де Фриза типа бегущей волны. Точные решения, описывающие эти волны, получены путемс ведения автоволновым приближением уравнения Кортевега – де Фриза к обыкновенным дифференциальным уравнениям сначала третьего, затем второго и, наконец, первого порядков. Обращение к числовому примеру показывает, что полученные такимо бразом обыкновенные дифференциальные уравнения не являются равносильными. Сформулированная и доказанная в настоящей статье теорема и замечание к ней показывают, что множество решений уравнения третьего порядка самое широкое и в качестве подмножеств включает в себя множества решений уравнений первого и второго порядков, которые в свою очередь равносильными не являются. Полученное автоволновым приближением обыкновенное дифференциальное уравнение первого порядка является источником для нахождения точных формул для описания кноидальной волны (периодического решения) и солитона (уединенной волны). Несмотря на это, с вычислительной точки зрения это уравнение является самым неудобным. Для этого уравнения не выполняется условие Липшица по искомой функции в окрестности постоянных решений. Отсюда теорема о существовании и единственности решения задачи Коши для обыкновенного дифференциального уравнения первого порядка не является справедливой. В частности, в стационарных точках нарушается единственность решения задачи Коши. Поэтому для обыкновенного дифференциального уравнения первого порядка, полученного из уравнения Кортевега – де Фриза, и в случае кноидальной волны, и в случае солитона задачу Коши нельзя ставить в точках экстремума. Начальное условие может быть поставлено лишь в точке убывания или роста, а отрезок численного решения необходимо выбрать так, чтобы он лежал между соседними точками экстремума. Но для уравнений второго и третьего порядков начальные условия можно ставить как в точках убывания или роста, так и в точках экстремума. При этом отрезок для численного решения сильно расширяется и наблюдается периодичность. Для решений этих обыкновенных уравнений изучаются постановки задач Коши, проводится сравнение полученных результатов с точными решениями и между собой. Показана численная реализация перерождения кноидальной волны в солитон. Результаты статьи имеют гемодинамическую интерпретацию пульсационного течения кровотока в цилиндрическом кровеносном сосуде, состоящем из упругих колец.
Ключевые слова: уравнение Кортевега – де Фриза, кноидальные волны, солитон, задача Коши, условие Липшица.
Features of numerical solutions of some problems for cnoidal waves as periodic solutions of the Korteweg – de Vries
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 885-901This article discusses the features of the numerical solutions of some problems for cnoidal waves, which are periodic solutions of the classical Korteweg – de Vries equation of the traveling wave type. Exact solutions describing these waves were obtained by communicating the autowave approximation of the Korteweg – de Vries equation to ordinary functions of the third, second, and finally, first orders. Referring to a numerical example shows that in this way ordinary differential equations are not equivalent. The theorem formulated and proved in this article and the remark to it include the set of solutions of the first and second order, which, in their ordinal, are not equivalent. The ordinary differential equation of the first order obtained by the autowave approximation for the description of a cnoidal wave (a periodic solution) and a soliton (a solitary wave). Despite this, from a computational point of view, this equation is the most inconvenient. For this equation, the Lipschitz condition for the sought-for function is not satisfied in the neighborhood of constant solutions. Hence, the existence theorem and the unique solutions of the Cauchy problem for an ordinary differential equation of the first order are not valid. In particular, the uniqueness of the solution to the Cauchy problem is violated at stationary points. Therefore, for an ordinary differential equation of the first order, obtained from the Korteweg – de Vries equation, both in the case of a cnoidal wave and in the case of a soliton, the Cauchy problem cannot be posed at the extremum points. The first condition can be a set position between adjacent extremum points. But for the second, third and third orders, the initial conditions can be set at the growth points and at the extremum points. In this case, the segment for the numerical solution greatly expands and periodicity is observed. For the solutions of these ordinary solutions, the statements of the Cauchy problems are studied, and the results are compared with exact solutions and with each other. A numerical realization of the transformation of a cnoidal wave into a soliton is shown. The results of the article have a hemodynamic interpretation of the pulsating blood flow in a cylindrical blood vessel consisting of elastic rings.
-
Бегущие волныв параболической задаче с преобразованием поворота на окружности
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 705-716Оптические системы с двумерной обратной связью демонстрируют широкие возможности по исследованию процессов зарождения и развития диссипативных структур. Обратная связь позволяет воздействовать на динамику оптической системы посредством управляемого преобразования пространственных переменных, выполняемых призмами, линзами, динамическими голограммами и другими устройствами. Нелинейный интерферометр с зеркальным отражением поля в двумерной обратной связи является одной из наиболее простых оптических систем, в которых реализуется нелокальный характер взаимодействия световых полей.
Математической моделью оптических систем с двумерной обратной связью является нелинейное параболическое уравнение с преобразованием поворота пространственной переменной и условиями периодичности на окружности.
Исследуются вопросы бифуркации рождения стационарных структур типа бегущей волны, эволюции их форм при уменьшении бифуркационного параметра (коэффициента диффузии) и динамики их устойчивости при отходе от критического значения параметра бифуркации и дальнейшем его уменьшении. Впервые в качестве бифуркационного параметра был взят коэффициент диффузии.
В работе используются метод центральных многообразий и метод Галёркина. На основе метода центральных многообразий доказана теорема о существовании, форме и устойчивости решения типа бегущей волны в окрестности бифуркационного значения коэффициента диффузии. Получено представление первой бегущей волны, рождающейся в результате бифуркации Андронова–Хопфа при переходе бифуркационного параметра через критическое значение. Согласно теореме о центральном многообразии первая бегущая волна рождается орбитально устойчивой.
Поскольку доказанная теорема дает возможность исследовать рожденные решения только в окрестности критического значения бифуркационного параметра, то для изучения динамики изменений решения типа бегущей волны при отходе бифуркационного параметра в область надкритичности был использован формализм метода Галёркина. В соответствии с методом центральных многообразий составлена галёркинская аппроксимация приближенных решений поставленной задачи. При уменьшении параметра бифуркации и его переходе через критическое значение нулевое решение задачи теряет устойчивость колебательным образом. В результате от нулевого решения ответвляется периодическое решение типа бегущей волны. Эта волна рождается орбитально устойчивой. При дальнейшем уменьшении параметра и его прохождении через следующее критическое значение от нулевого решения в результате бифуркации Андронова–Хопфа рождается второе решение типа бегущей волны. Данная волна рождается неустойчивой, с индексом неустойчивости два.
Численные расчеты с помощью пакета Mathematica показали, что применение метода Галёркина приводит к качественно и количественно правильным результатам. Полученные результаты хорошо согласуются с результатами, полученными другими авторами, и могут быть использованы для постановки экспериментов по изучению явлений в оптических системах с обратной связью.
Ключевые слова: параболическая задача, бифуркация, устойчивость, бегущая волна, метод центральных многообразий, метод Галёркина.
Traveling waves in a parabolic problem with a rotation on the circle
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 705-716Views (last year): 11. Citations: 5 (RSCI).Optical systems with two-dimensional feedback demonstrate wide possibilities for studying the nucleation and development processes of dissipative structures. Feedback allows to influence the dynamics of the optical system by controlling the transformation of spatial variables performed by prisms, lenses, dynamic holograms and other devices. A nonlinear interferometer with a mirror image of a field in two-dimensional feedback is one of the simplest optical systems in which is realized the nonlocal nature of light fields.
A mathematical model of optical systems with two-dimensional feedback is a nonlinear parabolic equation with rotation transformation of a spatial variable and periodicity conditions on a circle. Such problems are investigated: bifurcation of the traveling wave type stationary structures, how the form of the solution changes as the diffusion coefficient decreases, dynamics of the solution’s stability when the bifurcation parameter leaves the critical value. For the first time as a parameter bifurcation was taken of diffusion coefficient.
The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds and the Galerkin’s method are used in this paper. The method of central manifolds allows to prove a theorem on the existence and form of the traveling wave type solution neighborhood of the bifurcation value. The first traveling wave born as a result of the Andronov –Hopf bifurcation in the transition of the bifurcation parameter through the сritical value. According to the central manifold theorem, the first traveling wave is born orbitally stable.
Since the above theorem gives the opportunity to explore solutions are born only in the vicinity of the critical values of the bifurcation parameter, the decision to study the dynamics of traveling waves of change during the withdrawal of the bifurcation parameter in the supercritical region, the formalism of the Galerkin method was used. In accordance with the method of the central manifold is made Galerkin’s approximation of the problem solution. As the bifurcation parameter decreases and its transition through the critical value, the zero solution of the problem loses stability in an oscillatory manner. As a result, a periodic solution of the traveling wave type branches off from the zero solution. This wave is born orbitally stable. With further reduction of the parameter and its passage through the next critical value from the zero solution, the second solution of the traveling wave type is produced as a result of the Andronov –Hopf bifurcation. This wave is born unstable with an instability index of two.
Numerical calculations have shown that the application of the Galerkin’s method leads to correct results. The results obtained are in good agreement with the results obtained by other authors and can be used to establish experiments on the study of phenomena in optical systems with feedback.
-
Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.
Ключевые слова: метод решеточных уравнений Больцмана, устойчивость.
Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 485-500Stability of finite difference schemes of lattice Boltzmann method for modelling of 1D diffusion for cases of D1Q2 and D1Q3 lattices is investigated. Finite difference schemes are constructed for the system of linear Bhatnagar–Gross–Krook (BGK) kinetic equations on single particle distribution functions. Brief review of articles of other authors is realized. With application of multiscale expansion by Chapman–Enskog method it is demonstrated that system of BGK kinetic equations at small Knudsen number is transformated to scalar linear diffusion equation. The solution of linear diffusion equation is obtained as a sum of single particle distribution functions. The method of linear travelling wave propagation is used to show the unconditional asymptotic stability of the solution of Cauchy problem for the system of BGK equations at all values of relaxation time. Stability of the scheme for D1Q2 lattice is demonstrated by the method of differential approximation. Stability condition is written in form of the inequality on values of relaxation time. The possibility of the reduction of stability analysis of the schemes for BGK equations to the analysis of special schemes for diffusion equation for the case of D1Q3 lattice is investigated. Numerical stability investigation is realized by von Neumann method. Absolute values of the eigenvalues of the transition matrix are investigated in parameter space of the schemes. It is demonstrated that in wide range of the parameters changing the values of modulas of eigenvalues are lower than unity, so the scheme is stable with respect to initial conditions.
Keywords: lattice Boltzmann method, stability.Views (last year): 2. Citations: 1 (RSCI). -
Эффекты воздействия электрического поля на химические структуры
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.
Electric field effects in chemical patterns
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718Views (last year): 8.Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"