All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 20.
-
Применение схемы«КАБАРЕ» к задаче об эволюции свободного сдвигового течения
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 881-903В настоящей работе приводятся результаты численного моделирования свободного сдвигового течения с помощью схемы «КАБАРЕ», реализованной в приближении слабой сжимаемости. Анализ схемы проводится на основе изучения свойств неустойчивости Кельвина–Гельмгольца и порождаемой ею двумерной турбулентности, с использованием интегральных кривых кинетической энергии и энстрофии, картин временной эволюции завихренности, спектров энстрофии и энергии, а также дисперсионного соотношения для инкремента неустойчивости. Расчеты проводились для числа Рейнольдса $\text{Re} = 4 \times 10^5$, на квадратных последовательно сгущаемых сетках в диапазоне $128^2-2048^2$ ячеек. Внимание уделено проблеме «недоразрешенности слоев», проявляющейся в возникновении лишнего вихря при свертывании двух вихревых листов (слоев вихревой пелены). Данное явление существует только на грубых сетках $(128^2)$, однако, полностью симметричная картина эволюции завихренности начинает наблюдаться только при переходе к сетке $1024^2$ ячеек. Размерные оценки отношения вихрей на границах инерционного интервала показывают, что наиболее подробная сетка $2048^2$ ячеек оказывается достаточной для качественного отображения мелкомасштабных сгустков завихренности. Тем не менее можно говорить о достижении хорошей сходимости при отображении крупномасштабных структур. Эволюция турбулентности, в полном соответствии с теоретическими представлениями, приводит к появлению крупных вихрей, в которых сосредотачивается вся кинетическая энергия движения, и уединенных мелкомасштабных образований. Последние обладают свойствами когерентных структур, выживая в процессе нитеобразования (филаментации), и практически не взаимодействуют с вихрями других масштабов. Обсуждение диссипативных характеристик схемы ведется на основе анализа графиков скорости диссипации кинетической энергии, вычисляемой непосредственно, а также на основе теоретических соотношений для моделей несжимаемой жидкости (по кривым энстрофии) и сжимаемого газа (по влиянию тензора скоростей деформации и эффектов дилатации). Асимптотическое поведение каскадов кинетической энергии и энстрофии подчиняется реализующимся в двумерной турбулентности соотношениям $E(k) \propto k^{−3}$, $\omega^2(k) \propto k^{−1}$. Исследование зависимости инкремента неустойчивости от безразмерного волнового числа показывает хорошее согласие с данными других исследователей, вместе с тем часто используемый способ расчета инкремента неустойчивости не всегда оказывается достаточно точным, вследствие чего была предложена его модификация.
Таким образом, реализованная схема, отличаясь малой диссипативностью и хорошим вихреразрешением, оказывается вполне конкурентоспособной в сравнении с методами высокого порядка точности.
Ключевые слова: численная схема «КАБАРЕ», слабосжимаемая жидкость, неустойчивость Кельвина–Гельгольца, завихренность, энстрофия, инкремент неустойчивости, недоразрешаемые слои, «паразитный» вихрь, свертывание, инерционный интервал, когерентные структуры, филаментация, скорость диссипации, дилатация.
CABARET scheme implementation for free shear layer modeling
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903Views (last year): 17.In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.
The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods
-
Анализ численного метода решения задачи о распространении пламени по вертикальной поверхности горючего материала
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 755-774Снижение пожарной опасности при использовании полимерных материалов является одной из актуальных научно-технических задач. В связи со сложностью проведения экспериментальных исследований в данной области важным направлением современной фундаментальной науки является развитие теоретических основ описания реагирующих течений. Для решения вопросов, связанных с распространением пламени по поверхности горючего материала, необходимо совершенствовать методы математического моделирования, что обусловлено большим количеством протекающих физико-химических процессов, требующих моделирования каждого из них в отдельности, и сложным характером взаимодействия между этими процессами как в газовой среде, так и в твердом теле.
Распространение пламени вверх по вертикальной поверхности твердого горючего материала сопровождается нестационарными вихревыми структурами течения газа вблизи области горения, образование которых происходит в результате тепловой нестабильности и за счет действия сил естественной конвекции, ускоряющей горячие продукты сгорания. За счет вихревых структур от горячего газофазного пламени в твердый материал в каждый момент времени поступает разное количество тепловой энергии. Поэтому адекватный расчет теплового потока и, соответственно, вихревого течения имеет важное значение для оценки скорости распространения пламени.
Данная работа появящена оценкам параметров численного метода решения задачи распространения пламени по поверхности горючего материала, учитывающего сопряженный характер взаимодействия газовой среды и твердого тела и вихревое течение, вызванное естественной конвекцией. В работе рассмотрены особенности использования различных аппроксимационных схем, используемых при интегрировании исходных дифференциальных уравнений по пространству и во времени, релаксации полей при итерировании внутри шага по времени, различных шагов интегрирования по времени.
Сформулированная в работе математическая модель позволяет описывать процесс распространения пламени по поверхности горючего материала. Газодинамика моделируется системой уравнений Навье – Стокса, вихревое течение описывается комбинированной моделью турбулентности RANS–LES (DDES), турбулентное горение — комбинированной моделью горения Eddy Break-Up с учетом кинетических эффектов, теплопередача излучением — методом сферических гармоник первого порядка аппроксимации (P1). Решение уравнений производится в программном пакете OpenFOAM.
Ключевые слова: метод решения, численные схемы, итерационная процедура, распространение пламени, твердый горючий материал, пиролиз, турбулентное диффузионное горение, тепломассообмен.
Analysis of a numerical method for studying upward flame spread over solid material
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 755-774Views (last year): 33.Reduction of the fire hazard of polymeric materials is one of the important scientific and technical problems. Since complexity of experimental procedures associated with flame spread, establishing reacting flows theoretical basics turned out to be crucial field of modern fundamental science. In order to determine parameters of flame spread over solid combustible materials numerical modelling methods have to be improved. Large amount of physical and chemical processes taking place needed to be resolved not just separately one by one but in connection with each other in gas and solid phases.
Upward flame spread over vertical solid combustible material is followed by unsteady eddy structures of gas flow in the vicinity of flame zone caused by thermal instability and natural convection forces accelerating hot combustion products. At every moment different amount of heat energy is transferred from hot gas-phase flame to solid material because of eddy flow structures. Therefore, satisfactory heat flux and eddy flow modelling are important to estimate flame spread rate.
In the current study we evaluated parameters of numerical method for flame spread over solid combustible material problem taking into account coupled nature of complex interaction between gas phase, solid material and eddy flow resulted from natural convection. We studied aspects of different approximation schemes used in differential equations integration process over space and time, of fields relaxation during iterations procedure carried out inside time step, of different time step values.
Mathematical model formulated allows to simulate flame spread over solid combustible material. Fluid dynamics is modeled by Navier – Stokes system of equations, eddy flow is described by combined turbulent model RANS–LES (DDES), turbulent combustion is resolved by modified turbulent combustion model Eddy Break-Up taking into account kinetic effects, radiation transfer is modeled by spherical harmonics method of first order approximation (P1). The equations presented are solved in OpenFOAM software.
-
Моделирование нестационарной структуры потока около спускаемого аппарата в условиях марсианской атмосферы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 701-714В статье представлены результаты численного моделирования вихревого пространственного нестационарного движения среды, возникающего около боковой и донной поверхностей десантного модуля при его спуске в атмосфере Марса. Численное исследование проведено для высокоскоростного режима обтекания при различных углах атаки. Математическое моделирование осуществлено на основе модели Навье – Стокса и модели равновесных химических реакций для газового состава марсианской атмосферы. Результаты моделирования показали, что при рассматриваемых условиях движения спускаемого аппарата около его боковой и донной поверхностей реализуется нестационарное течение, имеющее ярко выраженный вихревой характер. Численные расчеты указывают на то, что в зависимости от угла атаки нестационарность и вихревой характер потока могут проявляться как на всей боковой и донной поверхностях аппарата, так и, частично, на их подветренной стороне. Для различных углов атаки приводятся картины вихревой структуры потока около поверхности спускаемого аппарата и в его ближнем следе, а также картины полей температуры и показателя адиабаты. Нестационарный характер обтекания подтверждается представленными временными зависимостями газодинамических параметров потока в различных точках поверхности аппарата. Проведенные параметрические расчеты позволили построить зависимости аэродинамических характеристик спускаемого аппарата от угла атаки. Математическое моделирование осуществляется на основе являющегося методом конечных объемов консервативного численного метода потоков, основанного на конечно-разностной записи законов сохранения аддитивных характеристик среды с использованием upwind-аппроксимаций потоковых переменных. Для моделирования возникающей при обтекании сложной вихревой структуры потока около спускаемого аппарата используются неравномерные вычислительные сетки, включающие до 30 миллионов конечных объемов с экспоненциальным сгущением к поверхности, что позволило выявить мелкомасштабные вихревые образования. Численные исследования проведены на базе разработанного комплекса программ, основанного на параллельных алгоритмах используемого численного метода и реализованного на современных многопроцессорных вычислительных системах. Приведенные в статье результаты численного моделирования получены при использовании до двух тысяч вычислительных ядер многопроцессорного комплекса.
Ключевые слова: математическое моделирование, параллельные алгоритмы, спускаемый аппарат, аэродинамические характеристики, вихревой поток, ближний след.
Simulation of unsteady structure of flow over descent module in the Martian atmosphere conditions
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 701-714The article presents the results of numerical modeling of the vortex spatial non-stationary motion of the medium arising near the lateral and bottom surfaces of the descent module during its movement in the atmosphere of Mars. The numerical study was performed for the high-speed streamline regime at various angles of attack. Mathematical modeling was carried out on the basis of the Navier – Stokes model and the model of equilibrium chemical reactions for the Martian atmosphere gas. The simulation results showed that under the considered conditions of the descent module motion, a non-stationary flow with a pronounced vortex character is realized near its lateral and bottom surfaces. Numerical calculations indicate that, depending on the angle of attack, the nonstationarity and vortex nature of the flow can manifest itself both on the entire lateral and bottom surfaces of the module, and, partially, on their leeward side. For various angles of attack, pictures of the vortex structure of the flow near the surface of the descent vehicle and in its near wake are presented, as well as pictures of the gas-dynamic parameters fields. The non-stationary nature of the flow is confirmed by the presented time dependences of the gas-dynamic parameters of the flow at various points on the module surface. The carried out parametric calculations made it possible to determine the dependence of the aerodynamic characteristics of the descent module on the angle of attack. Mathematical modeling is carried out on the basis of the conservative numerical method of fluxes, which is a finitevolume method based on a finite-difference writing of the conservation laws of additive characteristics of the medium using «upwind» approximations of stream variables. To simulate the complex vortex structure of the flow over descent module, the nonuniform computational grids are used, including up to 30 million finite volumes with exponential thickening to the surface, which made it possible to reveal small-scale vortex formations. Numerical investigations were carried out on the basis of the developed software package based on parallel algorithms of the used numerical method and implemented on modern multiprocessor computer systems. The results of numerical simulation presented in the article were obtained using up to two thousand computing cores of a multiprocessor complex.
-
Физические исследования, численное и аналитическое моделирование взрывных явлений. Обзор
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 505-546В данном обзоре рассмотрен широкий круг явлений и задач, связанных с взрывом. Подробные численные исследования позволили обнаружить интересный физический эффект — образование дискретных вихревых структур сразу за фронтом ударной волны, распространяющейся в плотных слоях неоднородной атмосферы. Показана необходимость дальнейшего исследования такого рода явлений и определения степени их связи с возможным развитием газодинамической неустойчивости. Дан краткий анализ многочисленных работ по тепловому взрыву метеороидов при их высокоскоростном движении в атмосфере Земли. Большое внимание уделено разработке численного алгоритма для расчета одновременного взрыва нескольких фрагментов метеороидов и проанализированы особенности развития такого газодинамического течения. Показано, что разработанные раннее алгоритмы для расчета взрывов могут успешно использоваться для исследования взрывных вулканических извержений. В работе представлены и обсуждаются результаты таких исследований как для континентальных, так и для подводных вулканов с определенными ограничениями на условия вулканической активности.
В работе выполнен математический анализ и представлены результаты аналитических исследований ряда важных физических явлений, характерных для взрывов высокой удельной энергии в ионосфере. Показано, что принципиальное значение для разработки достаточно полных и адекватных теоретических и численных моделей таких сложных явлений, как мощные плазменные возмущения в ионосфере, имеет предварительное лабораторное физическое моделирование основных процессов, определяющих эти явления. Показано, что наиболее близким объектом для такого моделирования является лазерная плазма. Приведены результаты соответствующих теоретических и экспериментальных исследований и показана их научная и практическая значимость. Дан краткий обзор работ последних лет по использованию лазерного излучения для лабораторного физического моделирования процессов воздействия ядерного взрыва на астроидные материалы.
В результате выполненного в обзоре анализа удалось выделить и предварительно сформулировать некоторые интересные и весомые в научном и прикладном отношении вопросы, которые необходимо исследовать на основе уже полученных представлений: это мелкодисперсные химически активные системы, образующиеся при выбросе вулканов; маломасштабные вихревые структуры; генерация спонтанных магнитных полей из-за развития неустойчивости и их роль в трансформации энергии плазмы при ее разлете в ионосфере. Важное значение имеет также вопрос об исследовании возможного лабораторного физического моделирования теплового взрыва тел при воздействии высокоскоростного плазменного потока, который до настоящего времени имеет лишь теоретические толкования.
Ключевые слова: ударная волна, вихревые структуры, взрыв метеороида, вулканический взрыв, ядерный взрыв, спонтанное магнитное поле, лазерная плазма.
Physical research, numerical and analytical modeling of explosion phenomena. A review
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 505-546The review considers a wide range of phenomena and problems associated with the explosion. Detailed numerical studies revealed an interesting physical effect — the formation of discrete vortex structures directly behind the front of a shock wave propagating in dense layers of a heterogeneous atmosphere. The necessity of further investigation of such phenomena and the determination of the degree of their connection with the possible development of gas-dynamic instability is shown. The brief analysis of numerous works on the thermal explosion of meteoroids during their high-speed movement in the Earth’s atmosphere is given. Much attention is paid to the development of a numerical algorithm for calculating the simultaneous explosion of several fragments of meteoroids and the features of the development of such a gas-dynamic flow are analyzed. The work shows that earlier developed algorithms for calculating explosions can be successfully used to study explosive volcanic eruptions. The paper presents and discusses the results of such studies for both continental and underwater volcanoes with certain restrictions on the conditions of volcanic activity.
The mathematical analysis is performed and the results of analytical studies of a number of important physical phenomena characteristic of explosions of high specific energy in the ionosphere are presented. It is shown that the preliminary laboratory physical modeling of the main processes that determine these phenomena is of fundamental importance for the development of sufficiently complete and adequate theoretical and numerical models of such complex phenomena as powerful plasma disturbances in the ionosphere. Laser plasma is the closest object for such a simulation. The results of the corresponding theoretical and experimental studies are presented and their scientific and practical significance is shown. The brief review of recent years on the use of laser radiation for laboratory physical modeling of the effects of a nuclear explosion on asteroid materials is given.
As a result of the analysis performed in the review, it was possible to separate and preliminarily formulate some interesting and scientifically significant questions that must be investigated on the basis of the ideas already obtained. These are finely dispersed chemically active systems formed during the release of volcanoes; small-scale vortex structures; generation of spontaneous magnetic fields due to the development of instabilities and their role in the transformation of plasma energy during its expansion in the ionosphere. It is also important to study a possible laboratory physical simulation of the thermal explosion of bodies under the influence of highspeed plasma flow, which has only theoretical interpretations.
-
Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.
Ключевые слова: математическое моделирование, консервативные разностные схемы, параллельные алгоритмы, газовая динамика, астрофизика, массивные звезды, гравитация, конвекция, вихревые структуры, сверхновые.
Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643Views (last year): 27.The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.
-
Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.
В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.
Numerical calculation of planar geophysical flows of an inviscid incompressible fluid by a meshfree-spectral method
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 413-426Views (last year): 16.In this article, a meshfree-spectral method for numerical investigation of dynamics of planar geophysical flows is proposed. We investigate inviscid incompressible fluid flows with the presence of planetary rotation. Mathematically this problem is described by the non-steady system of two partial differential equations in terms of stream and vorticity functions with different boundary conditions (closed flow region and periodic conditions). The proposed method is based on several assumptions. First of all, the vorticity field is given by its values on the set of particles. The function of vorticity distribution is approximated by piecewise cubic polynomials. Coefficients of polynomials are found by least squares method. The stream function is calculated by using the spectral global Bubnov –Galerkin method at each time step.
The dynamics of fluid particles is calculated by pseudo-symplectic Runge –Kutta method. A detailed version of the method for periodic boundary conditions is described in this article for the first time. The adequacy of numerical scheme was examined on test examples. The dynamics of the configuration of four identical circular vortex patches with constant vorticity located at the vertices of a square with a center at the pole is investigated by numerical experiments. The effect of planetary rotation and the radius of patches on the dynamics and formation of vortex structures is studied. It is shown that, depending on the direction of rotation, the Coriolis force can enhance or slow down the processes of interaction and mixing of the distributed vortices. At large radii the vortex structure does not stabilize.
-
Численное моделирование когерентных и турбулентных структур излучения методом нелинейных интегральных отображений
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 979-992Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.
Ключевые слова: дискретные отображения, интегральные преобразования, солитоны, вихри, фронты переключения, вихревые решетки, хаос, турбулентность.
Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.
Keywords: discrete maps, integral transforms, solitons, vortices, switching waves, vortex lattices, chaos, turbulence.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"