Результаты поиска по 'laser plasma':
Найдено статей: 2
  1. Stupitsky E.L., Andruschenko V.A.
    Physical research, numerical and analytical modeling of explosion phenomena. A review
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 505-546

    The review considers a wide range of phenomena and problems associated with the explosion. Detailed numerical studies revealed an interesting physical effect — the formation of discrete vortex structures directly behind the front of a shock wave propagating in dense layers of a heterogeneous atmosphere. The necessity of further investigation of such phenomena and the determination of the degree of their connection with the possible development of gas-dynamic instability is shown. The brief analysis of numerous works on the thermal explosion of meteoroids during their high-speed movement in the Earth’s atmosphere is given. Much attention is paid to the development of a numerical algorithm for calculating the simultaneous explosion of several fragments of meteoroids and the features of the development of such a gas-dynamic flow are analyzed. The work shows that earlier developed algorithms for calculating explosions can be successfully used to study explosive volcanic eruptions. The paper presents and discusses the results of such studies for both continental and underwater volcanoes with certain restrictions on the conditions of volcanic activity.

    The mathematical analysis is performed and the results of analytical studies of a number of important physical phenomena characteristic of explosions of high specific energy in the ionosphere are presented. It is shown that the preliminary laboratory physical modeling of the main processes that determine these phenomena is of fundamental importance for the development of sufficiently complete and adequate theoretical and numerical models of such complex phenomena as powerful plasma disturbances in the ionosphere. Laser plasma is the closest object for such a simulation. The results of the corresponding theoretical and experimental studies are presented and their scientific and practical significance is shown. The brief review of recent years on the use of laser radiation for laboratory physical modeling of the effects of a nuclear explosion on asteroid materials is given.

    As a result of the analysis performed in the review, it was possible to separate and preliminarily formulate some interesting and scientifically significant questions that must be investigated on the basis of the ideas already obtained. These are finely dispersed chemically active systems formed during the release of volcanoes; small-scale vortex structures; generation of spontaneous magnetic fields due to the development of instabilities and their role in the transformation of plasma energy during its expansion in the ionosphere. It is also important to study a possible laboratory physical simulation of the thermal explosion of bodies under the influence of highspeed plasma flow, which has only theoretical interpretations.

  2. Cherednichenko A.I., Zakharov P.V., Starostenkov M.D., Sysoeva M.O., Eremin A.M.
    Nonlinear supratransmission in a Pt3Al crystal at intense external influence
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 109-117

    The effect of the nonlinear supratransmission in crystal of A3B stoichiometry is studied by molecular dynamics on the example of Pt3Al alloy. This effect is the transfer of energy at frequencies outside the phonon spectrum of the crystal. Research of the mechanisms of energy transport from the material surface to the interior is the important task, both from the theoretical point of view and from the prospects for practical application in the modification of near-surface layers by treatment with intense external influence of various types. The model was a three-dimensional face-centered cubic crystal whose atoms interact by means of the multiparticle potential obtained by the embedded atom method, which provides greater realism of the model in comparison with the use of pair potentials. Various forms of oscillation of the external influence region are considered. The possibility of energy transport from the crystal surface to the interior is shown by excitation of quasi-breathers near the region of influence and their subsequent destruction in the crystal and scattering of the energy stored on them. The quasibreathers are high-amplitude nonlinear atoms' oscillations of the alloy lightweight component at frequencies outside the phonon spectrum of the crystal. This effect was observed not with every oscillation's form of the region of influence. Quasi-breathers appeared most intensely near the region of influence with sinusoidal form oscillations. The results obtained indicate that the contribution of quasi-breathers to the energy transfer through the crystal increases with increasing amplitude of the influence. The range of amplitudes from 0.05 to 0.5 Å is considered. The frequency of the influence varied from 0.2 to 15 THz, which ensured the coverage of the entire spectrum of lowamplitude oscillations for this crystal's model. The minimum magnitude of the external effect amplitude at which this effect was observed was found to be 0.15 Å. At amplitudes greater than 0.5 Å, the cell rapidly decays for frequencies close to the optical branch of the phonon spectrum. The results of the study can be useful for laser processing of materials, surface treatment by low-energy plasma, and also in radiation materials science.

    Views (last year): 18.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"