All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 36.
-
Алгоритм метода по расчету границ качественных классов для количественных характеристик систем и по установлению взаимосвязей между характеристиками. Часть 1. Расчеты для двух качественных классов
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 19-36Предложен метод расчета границ качественных классов для количественных характеристик систем любой природы. Метод позволяет установить: связи, не поддающиеся обнаружению при помощи корреляционного и регрессионного анализа; границы для качественных классов индикатора состояния систем и факторов, влияющих на это состояние; вклад факторов в степень «неприемлемости» значений индикатора; достаточность программы наблюдений за
факторами для описания причин «неприемлемости» значений индикатора.Ключевые слова: анализ связи, максимизация силы связи, индикаторы, факторы, границы качественных классов, вклад фактора.
The algorithm of the method for calculating quality classes’ boundaries for quantitative systems’ characteristics and for determination of interactions between characteristics. Part 1. Calculation for two quality classes
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 19-36Views (last year): 1. Citations: 6 (RSCI).A calculation method for boundaries of quality classes for quantitative systems characteristics of any nature is suggested. The method allows to determine interactions which are not detectable using correlation and regression analysis; quality classes’ boundaries of systems’ condition indicator and boundaries of the factors influencing this condition; contribution of the factors to a degree of «inadmissibility» of indicator values; sufficiency of the program observing the factors to describe the causes of «inadmissibility» of indicator values.
-
Алгоритм метода по расчету границ качественных классов для количественных характеристик систем и по установлению взаимосвязей между характеристиками. Часть 2. Расчеты для трех и более качественных классов
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 37-54Метод расчета границ качественных классов для количественных характеристик систем любой природы адаптирован к поиску границ при наличии трех качественных классов. Адаптация метода позволила в дополнение к другим результатам определить границы между качественными классами при одновременной «неприемлемости» высоких и низких значений индикаторной характеристики состояния системы и одновременной «недопустимости» высоких и низких значений факторов, влияющих на систему.
Ключевые слова: анализ связи, максимизация силы связи, индикаторы, факторы, границы качественных классов, вклад фактора.
The algorithm of the method for calculating quality classes’ boundaries for quantitative systems’ characteristics and for determination of interactions between characteristics. Part 2. Calculation for three or more quality classes
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 37-54Views (last year): 4. Citations: 1 (RSCI).The method of calculation of the boundaries of quality classes for quantitative characteristics of systems with any properties is adapted to search for boundaries of three quality classes. In addition to other results, adaptation of the method allowed to determine boundaries between quality classes at simultaneous «unacceptability » of high and low values of indicator characteristic of the system condition and simultaneous «inadmissibility » of high and low values of factors affecting the system.
-
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы.
Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.
The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.
-
Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 1. Критерии неслучайности связи
Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 83-105На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторыми физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы стандартные методы статистического анализа (корреляционный, регрессионный), методы описания связи между качественными классами характеристик, основанные на отклонении исследуемого распределения характеристик от независимого распределения. Предложен метод поиска оптимальных границ качественных классов по критерию максимума коэффициентов связи.
Ключевые слова: флуоресценция, фитопланктон, пигменты, хлорофилл, коэффициент Юлла, коэффициент Пирсона, поиск связи, Рыбинское водохранилище.
Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 1. Criteria of connection nonrandomness
Computer Research and Modeling, 2013, v. 5, no. 1, pp. 83-105Views (last year): 3. Citations: 6 (RSCI).Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The standard methods of statistical analysis (correlation, regression), methods of description of connection between qualitative classes of characteristics, based on deviation of the studied characteristics distribution from independent distribution, are studied. A method of searching for boundaries of quality classes by criterion of maximum connection coefficient is offered.
-
Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.
Ключевые слова: электрофизиология, детальные модели, концептуальные модели, жесткие системы, численные методы.
Application of simplified implicit Euler method for electrophysiological models
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.
-
Поиск связей между биологическими и физико-химическими характеристиками экосистемы Рыбинского водохранилища. Часть 2. Детерминационный анализ
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 271-292На основании данных по содержанию пигментов фитопланктона, интенсивности флуоресценции проб и некоторым физико-химическим характеристикам вод Рыбинского водохранилища проведен поиск связи между биологическими и физико-химическими характеристиками. Исследованы методы описания связи между качественными классами характеристик, основанные на прогнозе качественных значений одной характеристики по качественным значениям другой. Найдены границы качественных классов исследуемых характеристик.
Ключевые слова: флуоресценция, фитопланктон, пигменты, хлорофилл, коэффициент Валли- са, коэффициент Гуттмана, коэффициент Чеснокова, поиск связи, Рыбинское водохранилище.
Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 2. Determination analysis
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 271-292Views (last year): 2. Citations: 3 (RSCI).Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The methods of describing of connections between qualitative classes of characteristics, based on forecast of quality values of one characteristics by quality values of another one, are studied. The borders of quality classes of studied characteristics are found.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"