Результаты поиска по 'fluorescence':
Найдено статей: 10
  1. Vdovichev A.A., Ramazanov R.R., Kononov A.I.
    Structural model of gold and silver fluorescent clusters
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 263-269

    Present work is dedicated to systematic study of equilibrium configurations of gold and silver clusters in size from 2 to 9 atoms. To the lowest energy configurations is performed calculation of electronic excitation spectra. All calculations are carried out within the framework of density functional theory (DFT) using the hybrid B3LYP functional and ECP LANL2DZ. Based on the analysis of the received electronic excitation spectra we try to confirm the assumption that small gold and silver clusters, capable of luminescence can be produced only in the presence of a stabilizing template. The authors show that without stabilization in the solution formed “flat” and “spherical” configuration whose spectra do not correspond to the experimental luminescence excitation spectra for DNA cluster complexes.

    Views (last year): 2. Citations: 1 (RSCI).
  2. Risnik D.V., Levich A.P., Bulgakov N.G., Bikbulatov E.S., Bikbulatova E.M., Ershov Y.V., Konuhov I.V., Korneva L.G., Lazareva V.I., Litvinov A.S., Maksimov V.N., Mamihin S.V., Osipov V.A., Otyukova N.G., Poddubnii S.A., Pirina I.L., Sokolova E.A., Stepanova I.E., Fursova P.V., Celmovich O.L.
    Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 1. Criteria of connection nonrandomness
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 83-105

    Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The standard methods of statistical analysis (correlation, regression), methods of description of connection between qualitative classes of characteristics, based on deviation of the studied characteristics distribution from independent distribution, are studied. A method of searching for boundaries of quality classes by criterion of maximum connection coefficient is offered.

    Views (last year): 3. Citations: 6 (RSCI).
  3. Maryakhina V.S., Gunkov V.V.
    Fluorescent probe immobilization into enzyme molecules
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 835-843

    The results of the experimental and theoretical researches of kinetics of erythrosine penetration into collagenase molecules have represented in this paper. The case with introduction of the compound (fluorescent probe) which has dimers to enzyme solution as an injection has been considered. It was shown that monomers and dimers can penetrate into enzyme molecules with formation complexes monomer — enzyme, dimer- enzyme. Moreover, transformation of probe fluorescence spectra is at each time moment. Spectrum maximum shift, and its form change. At a time, the immobilized dye dimers greatly impact to formation of end fluorescence spectrum. Well correlation between experimental and theoretical results confirms reality of the obtained data.

    Views (last year): 2. Citations: 3 (RSCI).
  4. Bratsun D.A., Lorgov E.S., Poluyanov A.O.
    Repressilator with time-delayed gene expression. Part I. Deterministic description
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259

    The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.

    Views (last year): 30.
  5. Levich A.P., Bulgakov N.G., Risnik D.V., Bikbulatov E.S., Bikbulatova E.M., Goncharov I.A., Ershov Y.V., Konuhov I.V., Korneva L.G., Lazareva V.I., Litvinov A.S., Maksimov V.N., Mamihin S.V., Osipov V.A., Otyukova N.G., Poddubnii S.A., Pirina I.L., Sokolova E.A., Stepanova I.E., Fursova P.V., Celmovich O.L.
    Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 3. Calculation of the boundaries of water quality classes
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 451-471

    Approbation of calculation of borders of water quality classes for the purpose of ecological diagnosis and standardization by data of the Rybinsk reservoir is carried out. For bioindication indicators of phytoplankton fluorescence and the contents of pigments of phytoplankton are used. Chesnokov's importance coefficient proved to be the most preferred measure of connection for analyzing the effects of environmental factors on indicators. The factors important for environmental condition are identified. Comparison of borders between quality classes “valid” and “invalid” of factors values and boundaries of the classifications of water quality.

    Views (last year): 4. Citations: 4 (RSCI).
  6. Krasilnikov P.M., Zlenko D.V., Stadnichuk I.N.
    Exciton interaction of the chromophores — a tool to fine-tune the mechanism of non-photochemical quenching of phycobilisome in cyanobacteria
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 125-144

    It was carried out a theoretical analysis of the energy migration rate in the process of non-photochemical quenching of fluorescence pigment-protein complex that performed by means of orange carotenoid-protein in the phycobilisomes of cyanobacteria. It is shown that the observed rate of energy transfer can not be interpreted in the framework of inductive-resonant mechanism of energy migration (Förster’s theory). On the contrary, according to the calculations the implementation of the exciton mechanism is fully consistent with the experimentally observed high quenching rate. An essential feature of the implementation of the exciton mechanism is to comply with a number of structural and functional conditions that require fine-tuning of the molecular system in the interaction of donor and acceptor molecules both each other and with the local molecular environment.

    Views (last year): 2. Citations: 2 (RSCI).
  7. Risnik D.V., Levich A.P., Bulgakov N.G., Bikbulatov E.S., Bikbulatova E.M., Ershov Y.V., Konuhov I.V., Korneva L.G., Lazareva V.I., Litvinov A.S., Maksimov V.N., Mamihin S.V., Osipov V.A., Otyukova N.G., Poddubnii S.A., Pirina I.L., Sokolova E.A., Stepanova I.E., Fursova P.V., Celmovich O.L.
    Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 2. Determination analysis
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 271-292

    Based on contents of phytoplankton pigments, fluorescence samples and some physico-chemical characteristics of the Rybinsk reservoir waters, searching for connections between biological and physicalchemical characteristics is working out. The methods of describing of connections between qualitative classes of characteristics, based on forecast of quality values of one characteristics by quality values of another one, are studied. The borders of quality classes of studied characteristics are found.

    Views (last year): 2. Citations: 3 (RSCI).
  8. Maryakhina V.S., Gunkov V.V.
    Fluorescence of molecular probe and its diffusion in a biological liquid
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 201-208

    The results of theoretical researches of molecular probe diffusion as well as its impact to probe fluorescence spectra are represented in this paper. The case with compound introduction to biological liquid as an injection has been considered. Shown, fluorescence spectra shifts of injected probe is a result of diffusion processes in biological liquid as well as its immobilization to contained structures (compound of peptides nature, different cell types and others).

    Views (last year): 2. Citations: 3 (RSCI).
  9. Maslakov A.S.
    Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1207-1221

    Photosynthetic apparatus of a plant cell consists of multiple photosynthetic electron transport chains (ETC). Each ETC is capable of capturing and utilizing light quanta, that drive electron transport along the chain. Light assimilation efficiency depends on the plant’s current physiological state. The energy of the part of quanta that cannot be utilized, dissipates into heat, or is emitted as fluorescence. Under high light conditions fluorescence levels gradually rise to the maximum level. The curve describing that rise is called fluorescence rise (FR). It has a complex shape and that shape changes depending on the photosynthetic apparatus state. This gives one the opportunity to investigate that state only using the non invasive measuring of the FR.

    When measuring fluorescence in experimental conditions, we get a response from millions of photosynthetic units at a time. In order to reproduce the probabilistic nature of the processes in a photosynthetic ETC, we created a Monte Carlo model of this chain. This model describes an ETC as a sequence of electron carriers in a thylakoid membrane, connected with each other. Those carriers have certain probabilities of capturing light photons, transferring excited states, or reducing each other, depending on the current ETC state. The events that take place in each of the model photosynthetic ETCs are registered, accumulated and used to create fluorescence rise and electron carrier redox states accumulation kinetics. This paper describes the model structure, the principles of its operation and the relations between certain model parameters and the resulting kinetic curves shape. Model curves include photosystem II reaction center fluorescence rise and photosystem I reaction center redox state change kinetics under different conditions.

  10. Plusnina T.Yu., Voronova E.N., Goltzev V.N., Pogosyan S.I., Yakovleva O.V., Riznichenko G.Yu., Rubin A.B.
    Reduced model of photosystem II and its use to evaluate the photosynthetic apparatus characteristics according to the fluorescence induction curves
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 943-958

    The approach for the analysis of some large-scale biological systems, on the base of quasiequilibrium stages is proposed. The approach allows us to reduce the detailed large-scaled models and obtain the simplified model with an analytical solution. This makes it possible to reproduce the experimental curves with a good accuracy. This approach has been applied to a detailed model of the primary processes of photosynthesis in the reaction center of photosystem II. The resulting simplified model of photosystem II describes the experimental fluorescence induction curves for higher and lower plants, obtained under different light intensities. Derived relationships between variables and parameters of detailed and simplified models, allow us to use parameters of simplified model to describe the dynamics of various states of photosystem II detailed model.

    Views (last year): 3. Citations: 2 (RSCI).

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"