All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Burlakov D.S. (Бурлаков Д.С.)
- Vostrikov D.D. (Востриков Д.Д.)
- Dobrovolskii D.D. (Добровольский Д.Д.)
- Dutbayeva D.M. (Дутбайева Д.М.)
- Zafievsky D.D. (Зафиевский Д.Д.)
- Ilyasov D.V. (Ильясов Д.В.)
- Kabanov D.K. (Кабанов Д.К.)
- Klyukin D.A. (Клюкин Д.А.)
- Marshakov D.V. (Маршаков Д.В.)
- Fiodorov D.D. (Фёдоров Д.Д.)
- Khachai D.M. (Хачай Д.М.)
-
Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.
Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.
Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.
Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.
В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.
Ключевые слова: глубокое обучение, машинное обучение, ЭЭГ, сверточная нейронная сеть, классификация, кластеризация, прогнозирование взаимодействия препарата с мишенью.
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.
Ключевые слова: гемостаз, тромбоз, компьютерное моделирование, фибринолиз, тромболизис, тромбоциты, тромбин, каскадсв ертывания.
Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.
-
Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.
Ключевые слова: наножидкость, концентрация SiO$_2$, кислотность рН, динамическая вязкость, регрессия, нейронные сети, машинное обучение.
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
-
Синтез АТФ F1-АТФазой в стохастической модели
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 217-223Данная работа является продолжением цикла работ [1-4], посвященных построению математической модели вращающегося молекулярного мотора F1-АТФазы. В данной работе в рамках представленной ранее модели рассматривается синтез АТФ при вращении ротора молекулярного мотора под действием внешней силы.
Synthesis of ATP by F1-ATPase in stochastic model
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 217-223Views (last year): 2. Citations: 1 (RSCI).The paper continues our series of papers [1-4] devoted to the development of mathematical model on rotation of F1-AТPase molecular motor. Here it has been considered the synthesis of ATP induced by external force applied to the rotor.
-
Моделирование динамики кальция в органических горизонтах почвы
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 103-110В данной работе представлены результаты моделирования круговорота кальция в лесных экосистемах. Кальций является одним из основных элементов минерального питания растений, регулирующим разные метаболические процессы. Его недостаток вызывает нарушения роста тканей растений. Увеличение дефицита кальция в лесных экосистемах появляется вследствие усиления кислотной нагрузки или отчуждения биомассы при вырубках. Модель представляет собой описание круговорота на основе потока вещества между пулами, включая подробное описание почвенной части круговорота – трансформация и минерализация подстилки и др. Для калибровки модели использовались экспериментальные данные по еловым лесам Болгарии.
Modeling of calcium dynamics in soil organic layers
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 103-110Views (last year): 1.Calcium is a major nutrient regulating metabolism in a plant. Deficiency of calcium results in a growth decline of plant tissues. Ca may be lost from forest soils due to acidic atmospheric deposition and tree harvesting. Plant-available calcium compounds are in the soil cation exchange complex and soil waters. Model of soil calcium dynamics linking it with the model of soil organic matter dynamics ROMUL in forest ecosystems is developed. ROMUL describes the mineralization and humification of the fraction of fresh litter which is further transformed into complex of partially humified substance (CHS) and then to stable humus (H) in dependence on temperature, soil moisture and chemical composition of the fraction (nitrogen, lignin and ash contents, pH). Rates of decomposition and humification being coefficients in the system of ordinary differential equations are evaluated using laboratory experiments and verified on a set of field experiments. Model of soil calcium dynamics describes calcium flows between pools of soil organic matter. Outputs are plant nutrition, leaching, synthesis of secondary minerals. The model describes transformation and mineralization of forest floor in detail. Experimental data for calibration model was used from spruсe forest of Bulgaria.
-
Математическая модель оптимизации с учетом нескольких критериев качества
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 489-502Проведение эффективной региональной политики с целью стабилизации производства невозможно без анализа динамики протекающих экономических процессов. Данная статья посвящена разработке математической модели, отражающей взаимодействие нескольких экономических агентов с учетом их интересов. Разработка такой модели и ее исследование может рассматриваться в качестве важного шага в решении теоретических и практических проблем управления экономическим ростом.
Ключевые слова: математическая модель, экономический рост, многокритериальная задача, экономический агент.
The mathematical optimization model based on several quality criteria
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 489-502Views (last year): 7.An effective regional policy in order to stabilize production is impossible without an analysis of the dynamics of economic processes taking place. This article focuses on developing a mathematical model reflecting the interaction of several economic agents with regard to their interests. Developing such a model and its study can be considered as an important step in solving theoretical and practical problems of managing growth.
-
Введение барионных струн в модель структуры спиральных галактик
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 597-612Предлагается новый альтернативный подход для объяснения плоского спектра скоростей орбитального движения звезд на периферии спиральных галактик и, в частности, значительного превышения значений скоростей, вычисленных по теореме о вириале. Концепция заключается в предположении о наличии у гравитационного поля центрального тела галактики цилиндрической, а не сферической симметрии. Эту конфигурацию поля можно объяснить наличием на оси галактики космической струны, длина которой перекрывает диаметр диска галактики. Эта модель будет подвергнута сравнению с более традиционной концепцией наличия у спиральной галактики шарового гало темной материи. Для этого подхода также будет предложена кинематическая модель и высказана гипотеза о природе темного вещества. Исследуются данные астрономических наблюдений о наличии космических струн в зонах, примыкающих к галактикам.
The introduction of baryon string in the model of spiral galaxies structure
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 597-612Views (last year): 2. Citations: 1 (RSCI).It proposes a new alternative approach to explain the flat spectrum of the velocity for stars orbital motion on the periphery of spiral galaxies. In particular, that velocity significant excess of speed calculated according to the virial theorem. The concept is the assumption of the existence for gravitational field of the Central body of the galaxy cylindrical, and not spherical, symmetry. The configuration of this field can be explained by the presence on galaxy axis the cosmic string, the length of which covers the diameter of the disk of the galaxy. This model will be subjected to comparison with the more traditional concept of the availability of the spiral galaxy ball halo of dark matter. For this approach it will also be offered a kinematic model, and the hypothesis about the nature of dark matter. It examines the data of astronomical observations about the presence of cosmic strings in the zones adjacent to galaxies.
-
Численное моделирование пространственных течений с закруткой потока
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 635-648Данная работа посвящена исследованию закрученных течений. Течения с закруткой потока находят широкое применение в различных технологических процессах. Закрученные течения могут сопровождаться такими нестационарными эффектами, как прецессия вихревого ядра. В свою очередь крупномасштабные пульсации, вызванные прецессией вихря, могут привести к повреждению конструкций и снижению надежности оборудования. Таким образом, для инженерных расчетов требуются подходы, достаточно хорошо описывающие подобные течения. В данной работе представлена методика описания закрученных потоков апробированная в рамках программных комплексов Fluent и SigmaFlow. Проведено численное моделирование нескольких тестовых задач с закруткой потока. Полученные результаты сопоставлены между собой, а также с экспериментальными данными.
Ключевые слова: вычислительная гидродинамика, FLUENT, SIGMAFLOW, уравнения Навье–Стокса, моделирование, турбулентное течение.
Numerical modeling of flows with flow swirling
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 635-648Views (last year): 4. Citations: 2 (RSCI).This paper is devoted to investigation of the swirl flows. Such flows are widely used in various industrial processes. Swirl flows can be accompanied by time-dependent effects, for example, precession of the vortex core. In turn, the large-scale fluctuations due to the precession of the vortex can cause damage of structures and reduce of equipment reliability. Thus, for engineering calculations approaches that sufficiently well described such flows are required. This paper presents the technique of swirl flows calculation, tested for CFD packages Fluent and SigmaFlow. A numerical simulation of several swirl flow test problems was carried out. Obtained results are compared with each other and with the experimental data.
-
Двуслойные интервальные взвешенные графы в оценке рыночных рисков
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 159-166Данная работа посвящена применению двуслойных интервальных взвешенных графов в прогнозировании нестационарных временных рядов и оценке по полученным прогнозам рыночных рисков. Первый слой графа с интервальными вершинами, формируемый во время первичного обучения системы, отображает все возможные флуктуации системы в отрезке времени, в котором обучали систему. Интервальные вершины второго слоя графа (надстройка над графом первого слоя), отображающие степень ошибки моделируемых значений временного ряда, соединены ребрами с вершинами графа первого слоя. Предложенная модель апробирована на получении 90-дневного прогноза цен на стальные биллеты. Средняя ошибка прогноза составила 2,6 %, что меньше средней ошибки авторегрессионных прогнозов.
Ключевые слова: рыночные риски, прогнозирование, нестационарные временные ряды, двуслойные интервальные взвешенные графы.
Double layer interval weighted graphs in assessing the market risks
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 159-166Views (last year): 2. Citations: 1 (RSCI).This scientific work is dedicated to applying of two-layer interval weighted graphs in nonstationary time series forecasting and evaluation of market risks. The first layer of the graph, formed with the primary system training, displays potential system fluctuations at the time of system training. Interval vertexes of the second layer of the graph (the superstructure of the first layer) which display the degree of time series modeling error are connected with the first layer by edges. The proposed model has been approved by the 90-day forecast of steel billets. The average forecast error amounts 2,6 % (it’s less than the average forecast error of the autoregression models).
-
Задача вычисления траектории с равномерным распределением ответов
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 803-828Рассматривается новая серия тестов, предназначенных для выявления способности человека к параллельным вычислениям. В отличие от задач, рассмотренных в предыдущих работах, в новых сериях ответы распределены статистически равномерно. Это упрощает анализ полученных результатов и уменьшает оценку статистической погрешности. Новые экспериментальные данные близки к результатам, полученным в предыдущих опытах.
Ключевые слова: инженерная психология, параллельные вычисления, тестирование, пропускная способность.
The task of trajectory calculation with the homogenous distribution of results
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 803-828Citations: 3 (RSCI).We consider a new set of tests which assigns to detection of human capability for parallel calculation. The new tests support the homogenous statistical distribution of results in distinction to the tests discussed in our previous works. This feature simplifies the analysis of test results and decreases the estimate of statistical error. The new experimental data is close to results obtained in previous experiments.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"