All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.
Ключевые слова: борщевик Сосновского, инвазивные растения, Google Earth Engine, машинное обучение, случайный лес.
Monitoring the spread of Sosnowskyi’s hogweed using a random forest machine learning algorithm in Google Earth Engine
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1357-1370Examining the spectral response of plants from data collected using remote sensing has a lot of potential for solving real-world problems in different fields of research. In this study, we have used the spectral property to identify the invasive plant Heracleum sosnowskyi Manden from satellite imagery. H. sosnowskyi is an invasive plant that causes many harms to humans, animals and the ecosystem at large. We have used data collected from the years 2018 to 2020 containing sample geolocation data from the Moscow Region where this plant exists and we have used Sentinel-2 imagery for the spectral analysis towards the aim of detecting it from the satellite imagery. We deployed a Random Forest (RF) machine learning model within the framework of Google Earth Engine (GEE). The algorithm learns from the collected data, which is made up of 12 bands of Sentinel-2, and also includes the digital elevation together with some spectral indices, which are used as features in the algorithm. The approach used is to learn the biophysical parameters of H. sosnowskyi from its reflectances by fitting the RF model directly from the data. Our results demonstrate how the combination of remote sensing and machine learning can assist in locating H. sosnowskyi, which aids in controlling its invasive expansion. Our approach provides a high detection accuracy of the plant, which is 96.93%.
-
Модельный способ оценки содержания хлорофилла в море на основании спутниковой информации
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 473-482На основе математическоймо дели динамики биомасс фитопланктона построен способ оценки содержания хлорофилла в районе моря с учетом его распределения по глубине. Модель построена на основе уравнения «реакция-диффузия», учитывает основные влияющие факторы: минеральное питание, освещенность и температуру. Используется спутниковая информация о поверхностном слое моря. Приведен пример расчетов для залива Петра Великого (Японское море).
Ключевые слова: математическая модель, хлорофилл, микротурбулентная диффузия, минеральное питание, освещенность, температура, дистанционное зондирование.
Model method of vertical chlorophyll concentration reconstruction from satellite data
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 473-482Views (last year): 5. Citations: 2 (RSCI).A model, describing the influence of external factors on temporal evolution of phytoplankton distribution in a horizontally-homogenous water layer, is presented. This model is based upon the reactiondiffusion equation and takes into account the main factors of influence: mineral nutrients, insolation and temperature. The mineral nutrients and insolation act oppositely on spatial phytoplankton distribution. The results of numerical modeling are presented and the prospect of applying this model to reconstruction of phytoplankton distribution from sea-surface satellite data is discussed. The model was used to estimate the chlorophyll content of the Peter the Great Bay (Sea of Japan).
-
Модельный подход к определению валовой и нетто первичной продукции лесных экосистем по величине поглощенной фотосинтетически активной радиации
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 345-353В работе предложена простая нелинейная модель, позволяющая рассчитать суточные и месячные значения валовой (GPP) и нетто (NPP) первичной продукции лесов по параметрам, характеризующим эффективность использования растениями ФАР на GPP и NPP, а также по интегральной величине поглощенной растительностью фотосинтетически активной радиации ФАР, определяемой в ходе измерений, в том числе средствами дистанционного зондирования. Необходимые для построения модели значения GPP и NPP определялись по данным измерений потоков СО2 в еловых и влажных тропических лесах с применением процесс-ориентированной модели Mixfor-SVAT.
Ключевые слова: валовая и нетто первичная продукция, тропические леса, еловые леса, SVAT-модель, эффективность использования ФАР на фотосинтез, дистанционное зондирование.
A modeling approach to estimate the gross and net primary production of forest ecosystems as a function of the fraction of absorbed photosynthetically active radiation
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 345-353Views (last year): 1. Citations: 2 (RSCI).A simple non-linear model allowing to calculate daily and monthly GPP and NPP of forests using parameters characterizing the light-use efficiencies for GPP and NPP, and integral values of absorbed photosynthetically active radiation, obtained using field measurements and remotes sensing data was suggested. Daily and monthly GPP, NPP of the forest ecosystems were derived from the field measurements of the net ecosystem exchange of CO2 in the spruce and tropical rain forests using a process-based Mixfor-SVAT model.
-
Перспективы использования космоснимков для прогнозирования загрязнения воздуха тяжелыми металлами
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 535-544Контроль за загрязнением воздуха имеет большое значение для стран Европы и Азии. В рамках Конвенции ООН по дальнему трансграничному переносу воздушных загрязнений (СLRTAP) реализуется программа UNECE ICP Vegetation, направленная на определение наиболее неблагополучных областей, создание региональных карт и улучшение понимания природы долгосрочных трансграничных загрязнений. В Объединенном институте ядерных исследований была разработана облачная платформа, предоставляющая участникам программы ICP Vegetation удобные инструменты для сбора, анализа и обработки данных мониторинга. В настоящее время в системе содержится информация о более чем 6000 точках пробоотбора в 40 регионах различных стран Европы и Азии.
Важным этапом контроля является моделирование загрязнений в местах, где частота исследований или плотность покрытия сети сбора образцов недостаточны. Одним из подходов к прогнозированию загрязнений является использование специализированных статистических моделей и методов машинного обучения совместно с различными количественными показателями точек сбора образцов и информацией о концентрациях элементов. Наиболее перспективным источником количественных показателей для обучения моделей являются космические снимки в различных спектрах. Обученная должным образом модель позволит получать прогноз по концентрациям элементов, используя исключительно космоснимки. Специализированная платформа Google Earth Engine предоставляет широкие возможности для анализа и обработки данных от более чем 100 различных проектов дистанционного зондирования земли, удобный интерфейс разработчика на JavaScript и программный интерфейс на Python для использования в сторонних приложениях.
В работе рассматривается возможность использования статистических показателей космоснимков, полученных от платформы Google Earth Engine, совместно с данными мониторинга состояния окружающей среды проекта ICP Vegetation для обучения моделей, способных прогнозировать концентрацию тяжелых металлов в определенных регионах.
Perspectives of using a satellite imagery data for prediction of heavy metals contamination
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 535-544 -
Использование облачных технологий CERN для дальнейшего развития по TDAQ ATLAS и его применения при обработке данных ДЗЗ в приложениях космического мониторинга
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 683-689Облачные технологий CERN (проект CernVM) дают новые возможности разработчикам программного обеспечения. Участие группы TDAQ ATLAS ОИЯИ в разработке ПО распределенной системы сбора и обработке данных эксперимента ATLAS (CERN) связано с необходимостью работы в условиях динамично развивающейся системы и ее инфраструктуры. Использование облачных технологий, в частности виртуальных машин CernVM, предоставляет наиболее эффективные способы доступа как к собственно ПО TDAQ, так и к ПО, используемому в CERN: среда — Scientific Linux и software repository c CernVM-FS. Исследуется вопрос о возможности функционирования ПО промежуточного уровня (middleware) в среде CernVM. Использование CernVM будет проиллюстрировано на трех задачах: разработка пакетов Event Dump и Webemon, а также на адаптации системы автоматической проверки качества данных TDAQ ATLAS — Data Quality Monitoring Framework для задач оценки качества радиолокационных данных.
Ключевые слова: облачные технологий, виртуальные машины, обработка данных в области дистанционного зондирования Земли, ATLAS TDAQ, ПО промежуточного уровня.
Using CERN cloud technologies for the further ATLAS TDAQ software development and for its application for the remote sensing data processing in the space monitoring tasks
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 683-689Views (last year): 2.The CERN cloud technologies (the CernVM project) give a new possibility for the software developers. The participation of the JINR ATLAS TDAQ working group in the software development for distributed data acquisition and processing system (TDAQ) of the ATLAS experiment (CERN) involves the work in the condition of the dynamically developing system and its infrastructure. The CERN cloud technologies, especially CernVM, provide the most effective access as to the TDAQ software as to the third-part software used in ATLAS. The access to the Scientific Linux environment is provided by CernVM virtual machines and the access software repository — by CernVM-FS. The problem of the functioning of the TDAQ middleware in the CernVM environment was studied in this work. The CernVM usage is illustrated on three examples: the development of the packages Event Dump and Webemon, and the adaptation of the data quality auto checking system of the ATLAS TDAQ (Data Quality Monitoring Framework) for the radar data assessment.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"