Результаты поиска по 'диффузия':
Найдено статей: 67
  1. Зленко Д.В., Красильников П.М.
    Молекулярное моделирование липидных бислойных мембран
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 423-436

    Построена полноатомная модель молекулы липида (дистеароилфосфатидилхолина, ДСФХ) и фрагмента липидной мембраны, необходимая для описания свойств липидных мембран в рамках метода молекулярной динамики. Построенная модель устойчива во времени, обладает термодинамически адекватным распределением энергии по степеням свободы системы и имеет параметры, хорошо согласующиеся с параметрами реального ДСФХ. С использованием построенной модели проведены расчеты проницаемости липидного бислоя для ионов натрия, воды и кислорода. Получены профили подвижности и коэффициентов диффузии этих частиц при их движении сквозь бислой, на основании которых оценены соответствующие коэффициенты проницаемости модельной мембраны. Показано, что липидные мембраны обладают значительным диффузионным сопротивлением не только для молекулы воды и иона натрия, но и для неполярной молекулы кислорода. Предложены теоретические методы расчета потоков исследуемых частиц через липидный бислой, а также методы оценки коэффициентов распределения малых молекул в системах липидный бислой - вода.

    Zlenko D.V., Krasilnikov P.M.
    Permeability of lipid membranes. A molecular dynamic study
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 423-436

    A correct model of lipid molecule (distearoylphosphatidylcholine, DSPC) and lipid membrane in water was constructed. Model lipid membrane is stable and has a reliable energy distribution among degrees of freedom. Also after equilibration model system has spatial parameters very similar to those of real DSPC membrane in liquid-crystalline phase. This model was used for studying of lipid membrane permeability to oxygen and water molecules and sodium ion. We obtained the values for transmembrane mobility and diffusion coefficients profiles, which we used for effective permeability coefficients calculation. We found lipid membranes to have significant diffusional resistance to penetration not only by charged particles, such as ions, but also by nonpolar molecules, such as oxygen molecule. We propose theoretical approach for calculation of particle flow across a membrane, as well as methods for estimation of distribution coefficients between bilayer and water phase.

    Views (last year): 20. Citations: 2 (RSCI).
  2. Турченков Д.А., Турченков М.А.
    Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338

    Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.

    Turchenkov D.A., Turchenkov M.A.
    Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 325-338

    The possibility to simplify the integration of Langevin equation using the variation of correlation between augmentation was researched. The analytical expression for a set of numerical schemes is presented. It’s shown that asymptotic limits for squared velocity depend on step size. The region of convergence and the convergence orders were estimated. It turned out that the incorrect correlation between increments decrease the accuracy down to the level of first-order methods for schemes based on precise solution.

    Views (last year): 5. Citations: 4 (RSCI).
  3. Лин А., Лобанов А.И., Погорелова Е.А.
    Математические модели роста тромба на основе уравнений типа «адвекция–диффузия» и Фоккера–Планка
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 271-283

    В работе рассмотрены модели формирования тромбоцитарного тромба в потоке плазмы крови в цилиндрическом сосуде, основанные на уравнении типа «адвекция–диффузия» и уравнении Фоккера–Планка. Приведено сравнение результатов расчетов на основе этих моделей. Рассмотренные модели демонстрируют качественно схожее поведение на начальном этапе формирования тромба. При детальном исследовании возникновения крупных сгустков необходимо уточнение моделей.

    Aung L., Lobanov A.I., Pogorelova E.A.
    Mathematical models for blood clot growth based on “advection–diffusion” and Fokker–Planck equations
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 271-283

    The paper considers models of platelet thrombus formation in blood plasma flow in a cylindrical vessel, based on the “advection–diffusion” equation and the Fokker–Planck equation. The comparison of the results of calculations based on these models is given. Considered models show qualitatively similar behavior at the initial stage of thrombus formation. А detailed investigation of large clots requires models’ improvement.

    Views (last year): 2.
  4. Зенюк Д.А.
    Стохастическое моделирование химических реакций в субдиффузионной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104

    В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.

    Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.

    Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.

    Zenyuk D.A.
    Stochastic simulation of chemical reactions in subdiffusion medium
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 87-104

    Theory of anomalous diffusion, which describe a vast number of transport processes with power law mean squared displacement, is actively advancing in recent years. Diffusion of liquids in porous media, carrier transport in amorphous semiconductors and molecular transport in viscous environments are widely known examples of anomalous deceleration of transport processes compared to the standard model.

    Direct Monte Carlo simulation is a convenient tool for studying such processes. An efficient stochastic simulation algorithm is developed in the present paper. It is based on simple renewal process with interarrival times that have power law asymptotics. Analytical derivations show a deep connection between this class of random process and equations with fractional derivatives. The algorithm is further generalized by coupling it with chemical reaction simulation. It makes stochastic approach especially useful, because the exact form of integrodifferential evolution equations for reaction — subdiffusion systems is still a matter of debates.

    Proposed algorithm relies on non-markovian random processes, hence one should carefully account for qualitatively new effects. The main question is how molecules leave the system during chemical reactions. An exact scheme which tracks all possible molecule combinations for every reaction channel is computationally infeasible because of the huge number of such combinations. It necessitates application of some simple heuristic procedures. Choosing one of these heuristics greatly affects obtained results, as illustrated by a series of numerical experiments.

  5. Потапов И.С., Волков Е.И.
    Анализ динамических режимов взаимодействующих синтетических генетических репрессиляторов
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 403-418

    В работе изучена динамика двух искусственных генетических осцилляторов — репрессиляторов, — связанных диффузией аутоиндуктора. Выбрана модель генетической сети, в которой производство, диффузия и ген-мишень для аутоиндуктора обеспечивают расталкивающее взаимодействие между фазовыми точками. Исследовано появление периодических режимов, устойчивых неоднородных стационарных состояний в зависимости от главных бифуркационных параметров: силы связи и скорости синтеза мРНК. Показано, что добавление в генетическую схему аутоиндуктора приводит к исчезновению предельного цикла через бифуркацию бесконечного периода в изолированном осцилляторе, если скорость синтеза мРНК велика. Найден гистерезис между предельным циклом и стационарным состоянием, размер которого зависит от соотношения времен жизни мРНК и белков. Взаимодействие двух осцилляторов приводит к появлению устойчивого противофазного предельного цикла, который может переходить в хаотический режим через «тор-хаос» или путем каскада Фейгенбаума.

    Potapov I.S., Volkov E.I.
    Dynamics analysis of coupled synthetic genetic repressilators
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 403-418

    We have investigated dynamics of synthetic genetic oscillators — repressilators — coupled through autoinducer diffusion. The model of the system with phase-repulsive coupling structure is under consideration. We have examined emergence of periodic regimes, stable inhomogeneous steady states depending on the main systems’ parameters: coupling strength and maximal transcription rate. It has been shown that autoinducer production module added to the isolated repressilator cause the limit cycle to disappear through infinite period bifurcation for sufficiently large transcription rate. We have found hysteresis of limit cycle and stable steady state the size of which is determined by ratio between mRNA and protein lifetimes. Two coupled oscillators system demonstrates stable anti-phase oscillations which can become a chaotic regime through invariant torus emergence or via Feigenbaum scenario.

    Views (last year): 2. Citations: 2 (RSCI).
  6. Галочкина Т.В., Вольперт В.А.
    Математическое моделирование распространения тромбина в процессе свертывания крови
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486

    В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.

    Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.

    Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.

    Galochkina T.V., Volpert V.A.
    Mathematical modeling of thrombin propagation during blood coagulation
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 469-486

    In case of vessel wall damage or contact of blood plasma with a foreign surface, the chain of chemical reactions called coagulation cascade is launched that leading to the formation of a fibrin clot. A key enzyme of the coagulation cascade is thrombin, which catalyzes formation of fibrin from fibrinogen. The distribution of thrombin concentration in blood plasma determines spatio-temporal dynamics of clot formation. Contact pathway of blood coagulation triggers the production of thrombin in response to the contact with a negatively charged surface. If the concentration of thrombin generated at this stage is large enough, further production of thrombin takes place due to positive feedback loops of the coagulation cascade. As a result, thrombin propagates in plasma cleaving fibrinogen that results in the clot formation. The concentration profile and the speed of propagation of thrombin are constant and do not depend on the type of the initial activator.

    Such behavior of the coagulation system is well described by the traveling wave solutions in a system of “reaction – diffusion” equations on the concentration of blood factors involved in the coagulation cascade. In this study, we carried out detailed analysis of the mathematical model describing the main reaction of the intrinsic pathway of coagulation cascade.We formulate necessary and sufficient conditions of the existence of the traveling wave solutions. For the considered model the existence of such solutions is equivalent to the existence of the wave solutions in the simplified one-equation model describing the dynamics of thrombin concentration derived under the quasi-stationary approximation.

    Simplified model also allows us to obtain analytical estimate of the thrombin propagation rate in the considered model. The speed of the traveling wave for one equation is estimated using the narrow reaction zone method and piecewise linear approximation. The resulting formulas give a good approximation of the velocity of propagation of thrombin in the simplified, as well as in the original model.

    Views (last year): 10. Citations: 1 (RSCI).
  7. Лобачева Л.В., Борисова Е.В.
    Моделирование процессов миграции загрязнений от свалки твердых бытовых отходов
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 369-385

    В статье представлены результаты исследования процессов миграции загрязнений от свалки твердых бытовых отходов (ТБО), расположенной в водоохранной зоне озера Селигер. Для изучения особенностей распространения загрязняющих веществ и определения миграционных параметров проведен комплекс полевых и лабораторных исследований в районе расположения свалки. Построена математическая модель, описывающая физико-химические процессы миграции веществ в почвогрунтовой толще. Процесс движения загрязняющих веществ обуславливается разнообразными факторами, оказывающими существенное влияние на миграцию ингредиентов ТБО, основными из которых являются: конвективный перенос, диффузия и сорбционные процессы, которые учтены в математической постановке задачи. Модифицированная математическая модель отличается от известных аналогов учетом ряда параметров, отражающих снижение концентрации ионов аммонийного и нитратного азота в грунтовых водах (транспирация корнями растений, разбавление инфильтрационными водами и т. д.). Представлено аналитическое решение по оценке распространения загрязнений от свалки ТБО. На основе математической модели построен комплекс имитационных моделей, который позволяет получить численное решение частных задач: вертикальной и горизонтальной миграции веществ в подземном потоке. В ходе выполнения численных экспериментов, получения аналитических решений, а также на основе данных полевых и лабораторных исследований изучена динамика распределения загрязнений в толще объекта исследования до озера. Сделан долгосрочный прогноз распространения загрязнений от свалки. В результате компьютерных и модельных экспериментов установлено, что при миграции загрязнений от свалки можно выделить ряд зон взаимодействия чистых грунтовых вод с загрязненными подземными водами, каждая из которой характеризуется различным содержанием загрязняющих веществ. Данные вычислительных экспериментов и аналитических расчетов согласуются с результатами полевых и лабораторных исследований объекта, что дает основание рекомендовать предлагаемые модели для прогнозирования миграции загрязнений от свалки ТБО. Анализ результатов моделирования миграции загрязнений позволяет обосновать численные оценки увеличения концентрации ионов $NH_4^+$ и $NO_3^-$ со временем функционирования свалки. Выявлено, что уже через 100 лет после начала существования свалки токсичные компоненты фильтрата заполнят все поровое пространство от свалки до озера, что приведет к существенному ухудшению экосистемы озера Селигер.

    Lobacheva L.V., Borisova E.V.
    Simulation of pollution migration processes at municipal solid waste landfills
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 369-385

    The article reports the findings of an investigation into pollution migration processes at the municipal solid waste (MSW) landfill located in the water protection zone of Lake Seliger (Tver Region). The distribution of pollutants is investigated and migration parameters are determined in field and laboratory conditions at the landfill site. A mathematical model describing physical and chemical processes of substance migration in soil strata is constructed. Pollutant migration is found to be due to a variety of factors. The major ones, having a significant impact on the migration of MSW ingredients and taken into account mathematically, include convective transport, diffusion and sorption processes. A modified mathematical model differs from its conventional counterparts by considering a number of parameters reflecting the decrease in the concentration of ammonium and nitrate nitrogen ions in ground water (transpiration by plant roots, dilution with infiltration waters, etc.). An analytical solution to assess the pollutant spread from the landfill is presented. The mathematical model provides a set of simulation models helping to obtain a computational solution of specific problems, vertical and horizontal migration of substances in the underground flow. Numerical experiments, analytical solutions, as well as field and laboratory data was studied the dynamics of pollutant distribution in the object under study up to the lake. A long-term forecast for the spread of landfill pollution is made. Simulation experiments showed that some zones of clean groundwater interact with those of contaminated groundwater during the pollution migration from the landfill, each characterized by a different pollutant content. The data of a computational experiments and analytical calculations are consistent with the findings of field and laboratory investigations of the object and give grounds to recommend the proposed models for predicting pollution migration from a landfill. The analysis of the pollution migration simulation allows to substantiate the numerical estimates of the increase in $NH_4^+$ and $NO_3^-$ ion concentration with the landfill operation time. It is found that, after 100 years following the landfill opening, toxic filtrate components will fill the entire pore space from the landfill to the lake resulting in a significant deterioration of the ecosystem of Lake Seliger.

  8. Рассматривается нелинейная краевая задача водородопроницаемости, соответствующая следующему эксперименту. Нагретая до достаточно высокой температуры мембрана из исследуемого конструкционного материала служит перегородкой вакуумной камеры. После предварительного вакуумирования и практически полной дегазации на входной стороне создается постоянное давление газообразного (молекулярного) водорода. С выходной стороны в условиях вакуумирования с помощью масс-спектрометра определяется проникающий поток.

    Принята линейная модель зависимости коэффициента диффузии растворенного атомарного водорода в объеме от концентрации, температурная зависимость в соответствии с законом Аррениуса. Поверхностные процессы растворения и сорбции-десорбции учтены в форме нелинейных динамических краевых условий (дифференциальные уравнения динамики поверхностных концентраций атомарного водорода). Математическая особенность краевой задачи состоит в том, что производные по времени от концентраций входят как в уравнение диффузии, так и в граничные условия с квадратичной нелинейностью. В терминах общей теории функционально-дифференциальных уравнений это приводит к так называемым уравнениям нейтрального типа и требует разработки более сложного математического аппарата. Представлен итерационный вычислительный алгоритм второго (повышенного) порядка точности решения соответствующей нелинейной краевой задачи на основе явно-неявных разностных схем. Явная составляющая применяется к более медленным подпроцессам, что позволяет на каждом шаге избегать решения нелинейной системы уравнений.

    Приведены результаты численного моделирования, подтверждающие адекватность модели экспериментальным данным. Определены степени влияния вариаций параметров водородопроницаемости («производные») на проникающий поток и распределение концентрации атомов H по толщине образца, что важно, в частности, для задач проектирования защитных конструкций от водородного охрупчивания и мембранных технологий получения особо чистого водорода. Вычислительный алгоритм позволяет использовать модель и при анализе экстремальных режимов для конструкционных материалов (перепады давления, высокие температуры, нестационарный нагрев), выявлять лимитирующие факторы при конкретных условиях эксплуатации и экономить на дорогостоящих экспериментах (особенно это касается дейтерий-тритиевых исследований).

    The article deals with the nonlinear boundary-value problem of hydrogen permeability corresponding to the following experiment. A membrane made of the target structural material heated to a sufficiently high temperature serves as the partition in the vacuum chamber. Degassing is performed in advance. A constant pressure of gaseous (molecular) hydrogen is built up at the inlet side. The penetrating flux is determined by mass-spectrometry in the vacuum maintained at the outlet side.

    A linear model of dependence on concentration is adopted for the coefficient of dissolved atomic hydrogen diffusion in the bulk. The temperature dependence conforms to the Arrhenius law. The surface processes of dissolution and sorptiondesorption are taken into account in the form of nonlinear dynamic boundary conditions (differential equations for the dynamics of surface concentrations of atomic hydrogen). The characteristic mathematical feature of the boundary-value problem is that concentration time derivatives are included both in the diffusion equation and in the boundary conditions with quadratic nonlinearity. In terms of the general theory of functional differential equations, this leads to the so-called neutral type equations and requires a more complex mathematical apparatus. An iterative computational algorithm of second-(higher- )order accuracy is suggested for solving the corresponding nonlinear boundary-value problem based on explicit-implicit difference schemes. To avoid solving the nonlinear system of equations at every time step, we apply the explicit component of difference scheme to slower sub-processes.

    The results of numerical modeling are presented to confirm the fitness of the model to experimental data. The degrees of impact of variations in hydrogen permeability parameters (“derivatives”) on the penetrating flux and the concentration distribution of H atoms through the sample thickness are determined. This knowledge is important, in particular, when designing protective structures against hydrogen embrittlement or membrane technologies for producing high-purity hydrogen. The computational algorithm enables using the model in the analysis of extreme regimes for structural materials (pressure drops, high temperatures, unsteady heating), identifying the limiting factors under specific operating conditions, and saving on costly experiments (especially in deuterium-tritium investigations).

  9. Заика Ю.В., Родченкова Н.И., Сидоров Н.И.
    Моделирование водородопроницаемости сплавов для мембранного газоразделения
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 121-135

    Производство высокочистого водорода необходимо для экологически чистой энергетики и различных химико-технологических процессов. Значительная часть водорода будет производиться за счет конверсии метана. Методом измерения удельной водородопроницаемости исследуются различные сплавы, перспективные для использования в газоразделительных установках. Требуется оценить параметры диффузии и сорбции, чтобы иметь возможность численно моделировать различные сценарии и условия эксплуатации материала (включая экстремальные), выделять лимитирующие факторы. В статье представлены нелинейная модель водородопроницаемости в соответствии со спецификой эксперимента, численный метод решения краевой задачи и результаты параметрической идентификации модели для сплава V85Ni15.

    Zaika Y.V., Rodchenkova N.I., Sidorov N.I.
    Modeling of H2-permeability of alloys for gas separation membranes
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 121-135

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. A considerable part of hydrogen is to be obtained by methane conversion. Different alloys, which may be wellsuited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear model of hydrogen permeability in accordance with the specifics of the experiment, the numerical method for solving the boundary-value problem, and the results of parametric identification for the alloy V85Ni15.

    Views (last year): 1. Citations: 7 (RSCI).
  10. Никонов Э.Г., Павлуш М., Поповичова М.
    Молекулярно-динамическое моделирование процессов взаимодействия водяного пара с несквозными порами цилиндрического типа
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 493-501

    Теоретические и экспериментальные исследования взаимодействия водяного пара с пористыми материалами проводятся как на макро-, так и на микроуровне. На макроуровне исследуется влияние структуры расположения индивидуальных пор на процессы взаимодействия водяного пара с пористым материалом как сплошной средой. На микроуровне исследуется зависимость характеристик взаимодействия водяного пара с пористой средой от геометрии и размеров индивидуальной поры.

    В данной работе проведено исследование посредством математического моделирования процессов взаимодействия водяного пара с индивидуальной несквозной порой цилиндрического типа. Вычисления производились с использованием модели гибридного типа, сочетающей в себе молекулярно-динамический и макродиффузионный подходы для описания взаимодействия водяного пара c индивидуальной порой. Исследовались процессы эволюции к состоянию термодинамического равновесия макроскопических характеристик системы, таких как температура, плотность, давление, в зависимости от внешних по отношению к поре условий. Проведено исследование зависимости параметров эволюции от распределения значений коэффициента диффузии в поре, полученного в результате молекулярно-динамического моделирования. Актуальность данных исследований обусловлена тем, что все используемые для моделирования влаго- и теплопроводности методы и программы основаны на применении уравнений переноса в пористом материале (как сплошной среде) с известными заранее значениями коэффициентов переноса, которые, как правило, получены экспериментально.

    Nikonov E.G., Pavlus M., Popovičová M.
    Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501

    Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.

    In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.

    Views (last year): 9.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"