All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Wavelet transform with the Morlet wavelet: Calculation methods based on a solution of diffusion equations
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 5-12Views (last year): 5. Citations: 3 (RSCI).Two algorithms of evaluation of the continuous wavelet transform with the Morlet wavelet are presented. The first one is the solution of PDE with transformed signal, which plays a role of the initial value. The second allows to explore the influence of central frequency variation via the diffusion smoothing of the data modulated by the harmonic functions. These approaches are illustrated by the analysis of the chaotic oscillations of the coupled Roessler systems.
-
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Views (last year): 9. Citations: 1 (RSCI).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
-
Global limit cycle bifurcations of a polynomial Euler–Lagrange–Liénard system
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 693-705In this paper, using our bifurcation-geometric approach, we study global dynamics and solve the problem of the maximum number and distribution of limit cycles (self-oscillating regimes corresponding to states of dynamical equilibrium) in a planar polynomial mechanical system of the Euler–Lagrange–Liйnard type. Such systems are also used to model electrical, ecological, biomedical and other systems, which greatly facilitates the study of the corresponding real processes and systems with complex internal dynamics. They are used, in particular, in mechanical systems with damping and stiffness. There are a number of examples of technical systems that are described using quadratic damping in second-order dynamical models. In robotics, for example, quadratic damping appears in direct-coupled control and in nonlinear devices, such as variable impedance (resistance) actuators. Variable impedance actuators are of particular interest to collaborative robotics. To study the character and location of singular points in the phase plane of the Euler–Lagrange–Liйnard polynomial system, we use our method the meaning of which is to obtain the simplest (well-known) system by vanishing some parameters (usually, field rotation parameters) of the original system and then to enter sequentially these parameters studying the dynamics of singular points in the phase plane. To study the singular points of the system, we use the classical Poincarй index theorems, as well as our original geometric approach based on the application of the Erugin twoisocline method which is especially effective in the study of infinite singularities. Using the obtained information on the singular points and applying canonical systems with field rotation parameters, as well as using the geometric properties of the spirals filling the internal and external regions of the limit cycles and applying our geometric approach to qualitative analysis, we study limit cycle bifurcations of the system under consideration.
-
Stationary states and bifurcations in a one-dimensional active medium of oscillators
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 491-512This article presents the results of an analytical and computer study of the collective dynamic properties of a chain of self-oscillating systems (conditionally — oscillators). It is assumed that the couplings of individual elements of the chain are non-reciprocal, unidirectional. More precisely, it is assumed that each element of the chain is under the influence of the previous one, while the reverse reaction is absent (physically insignificant). This is the main feature of the chain. This system can be interpreted as an active discrete medium with unidirectional transfer, in particular, the transfer of a matter. Such chains can represent mathematical models of real systems having a lattice structure that occur in various fields of natural science and technology: physics, chemistry, biology, radio engineering, economics, etc. They can also represent models of technological and computational processes. Nonlinear self-oscillating systems (conditionally, oscillators) with a wide “spectrum” of potentially possible individual self-oscillations, from periodic to chaotic, were chosen as the “elements” of the lattice. This allows one to explore various dynamic modes of the chain from regular to chaotic, changing the parameters of the elements and not changing the nature of the elements themselves. The joint application of qualitative methods of the theory of dynamical systems and qualitative-numerical methods allows one to obtain a clear picture of all possible dynamic regimes of the chain. The conditions for the existence and stability of spatially-homogeneous dynamic regimes (deterministic and chaotic) of the chain are studied. The analytical results are illustrated by a numerical experiment. The dynamical regimes of the chain are studied under perturbations of parameters at its boundary. The possibility of controlling the dynamic regimes of the chain by turning on the necessary perturbation at the boundary is shown. Various cases of the dynamics of chains comprised of inhomogeneous (different in their parameters) elements are considered. The global chaotic synchronization (of all oscillators in the chain) is studied analytically and numerically.
Keywords: dynamical system, lattice, bifurcations, oscillator, phase space, dynamical chaos, synchronization. -
Mathematical modeling of oscillator hereditarity
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1001-1021Views (last year): 4. Citations: 12 (RSCI).The paper considers hereditarity oscillator which is characterized by oscillation equation with derivatives of fractional order $\beta$ and $\gamma$, which are defined in terms of Gerasimova-Caputo. Using Laplace transform were obtained analytical solutions and the Green’s function, which are determined through special functions of Mittag-Leffler and Wright generalized function. It is proved that for fixed values of $\beta = 2$ and $\gamma = 1$, the solution found becomes the classical solution for a harmonic oscillator. According to the obtained solutions were built calculated curves and the phase trajectories hereditarity oscillatory process. It was found that in the case of an external periodic influence on hereditarity oscillator may occur effects inherent in classical nonlinear oscillators.
-
The mechanism of formation of oscillons — localized oscillatory structures
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1177-1184Views (last year): 6. Citations: 1 (RSCI).A formal model mechanism of oscillon formation is proposed. These structures were found in a variety of physical systems and a chemical Belousov–Jabotinsky reaction proceeding in an aerosol OT water-inoil microemulsion. Via the proposed mechanism oscillons occur as a result of interaction of two subsystems. In the first subsystem for a proper set of parameters solitary stationary structures may arise as a result of hard local excitation. These structures influence spatial distribution of the second subsystem parameter that leads to local oscillations in the subsystem.
-
An integer-valued mathematical model of lake communities: Chaotic and long-period oscillations in the fish population size
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 229-239Views (last year): 6.We present the results of a mathematical model for the aquatic communities which include zooplankton, planktivorous fish and predator fish. The aquatic populations are considered to be body mass- and agestructured, while the trophic relations between the populations to be correspondingly status-specific. The model reproduces diverse dynamic regimes as such steady states and oscillations in the population size. Oscillations in the fish population size are shown to be both regular and irregular. We show that the period of the regular oscillations can be up to decades. The irregular oscillations are shown to be both chaotic and non-chaotic. Analyzing the dynamics in the model parameter space has enabled us to conclude that predictability of fish population dynamics can face difficulties both due to dynamical chaos and to the competition between various dynamical regimes caused by variations in the model parameters, specifically in the zooplankton growth rate.
-
Linearly convergent gradient-free methods for minimization of parabolic approximation
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.
In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.
In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.
Experimental results confirm the efficiency and practical applicability of all the obtained methods.
-
Numerical solution of systems of nonlinear second-order differential equations with variable coefficients by the one-step Galerkin method
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1153-1167A nonlinear oscillatory system described by ordinary differential equations with variable coefficients is considered, in which terms that are linearly dependent on coordinates, velocities and accelerations are explicitly distinguished; nonlinear terms are written as implicit functions of these variables. For the numerical solution of the initial problem described by such a system of differential equations, the one-step Galerkin method is used. At the integration step, unknown functions are represented as a sum of linear functions satisfying the initial conditions and several given correction functions in the form of polynomials of the second and higher degrees with unknown coefficients. The differential equations at the step are satisfied approximately by the Galerkin method on a system of corrective functions. Algebraic equations with nonlinear terms are obtained, which are solved by iteration at each step. From the solution at the end of each step, the initial conditions for the next step are determined.
The corrective functions are taken the same for all steps. In general, 4 or 5 correction functions are used for calculations over long time intervals: in the first set — basic power functions from the 2nd to the 4th or 5th degrees; in the second set — orthogonal power polynomials formed from basic functions; in the third set — special linear-independent polynomials with finite conditions that simplify the “docking” of solutions in the following steps.
Using two examples of calculating nonlinear oscillations of systems with one and two degrees of freedom, numerical studies of the accuracy of the numerical solution of initial problems at various time intervals using the Galerkin method using the specified sets of power-law correction functions are performed. The results obtained by the Galerkin method and the Adams and Runge –Kutta methods of the fourth order are compared. It is shown that the Galerkin method can obtain reliable results at significantly longer time intervals than the Adams and Runge – Kutta methods.
-
Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"