Результаты поиска по 'квадратичная задача':
Найдено статей: 33
  1. Стёпкин А.В.
    Использование коллектива агентов для распознавания графа
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 525-532

    В работе рассматривается задача распознавания графов коллективом агентов. Два агента-исследователя одновременно передвигаются по графу, считывают и изменяют метки элементов графа, передают необходимую информацию агенту-экспериментатору, который строит представление исследуемого графа. Построен алгоритм распознавания линейной (от числа вершин графа) временной сложности, квадратичной емкостной сложности и коммуникационной сложности равной O(n2·log(n)), где n — число вершин графа. Для распознавания два, передвигающиеся по графу, агента используют по две различные краски (всего три краски). Алгоритм основан на методе обхода графа в глубину.

    Stepkin A.V.
    Using collective of agents for exploration of graph
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 525-532

    Problem of exploration finite undirected graphs by a collective of agents is considered in this work. Two agents-researchers simultaneously move on graph, they read and change marks of graph elements, transfer the information to the agent-experimenter (it builds explored graph representation). It was constructed an algorithm linear (from amount of the graph’s nodes) time complexity, quadratic space complexity and communication complexity, that is equal to O(n2·log(n)). Two agents (which move on graph) need two different colors (in total three colors) for graph exploration. An algorithm is based on depth-first traversal method.

    Views (last year): 4. Citations: 2 (RSCI).
  2. Тюрин А.И.
    Прямо-двойственный быстрый градиентный метод с моделью
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 263-274

    В данной работе рассматривается возможность применения концепции $(\delta, L)$-модели функции для оптимизационных задач, в которых посредством решения прямой задачи имеется необходимость восстанавливать решение двойственной задачи. Концепция $(\delta, L)$-модели основана на концепции $(\delta, L)$-оракула, предложенной Деволдером–Глинером–Нестеровым, при этом данные авторы предложили фукнционалы в оптимизационных задачах аппроксимировать сверху выпуклой параболой с некоторым аддитивным шумом $\delta$; таким образом, им удалось получить квадратичные верхние оценки с шумом даже для негладких функционалов. Концепция $(\delta, L)$-модели продолжает эту идею за счет того, что аппроксимация сверху делается не выпуклой параболой, а некоторым более сложным выпуклым функционалом. Возможность восстанавливать решение двойственной задачи хорошо зарекомендовала себя, так как во многих случаях в прямой задаче можно значительно быстрее находить решение, чем в двойственной. Отметим, что прямо-двойственные методы хорошо изучены, но при этом, как правило, каждый метод предлагается под конкретный класс задач. Наша же цель — предложить метод, который бы включал в себя сразу различные методы. Это реализуется за счет использования концепции $(\delta, L)$-модели и адаптивной структуры наших методов. Таким образом, нам удалось получить прямо-двойственный адаптивный градиентный метод и быстрый градиентный метод с $(\delta, L)$-моделью и доказать оценки сходимости для них, причем для некоторых классов задач данные оценки являются оптимальными. Основная идея заключается в том, что нахождение двойственных решений происходит относительно оптимизационной задачи, которая аппроксимируют прямую с помощью концепции $(\delta, L)$-модели и имеет более простую структуру, поэтому находить двойственное решение у нее проще. Стоит отметить, что это происходит на каждом шаге работы оптимизационного метода; таким образом, реализуется принцип «разделяй и властвуй».

    Tyurin A.I.
    Primal-dual fast gradient method with a model
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 263-274

    In this work we consider a possibility to use the conception of $(\delta, L)$-model of a function for optimization tasks, whereby solving a primal problem there is a necessity to recover a solution of a dual problem. The conception of $(\delta, L)$-model is based on the conception of $(\delta, L)$-oracle which was proposed by Devolder–Glineur–Nesterov, herewith the authors proposed approximate a function with an upper bound using a convex quadratic function with some additive noise $\delta$. They managed to get convex quadratic upper bounds with noise even for nonsmooth functions. The conception of $(\delta, L)$-model continues this idea by using instead of a convex quadratic function a more complex convex function in an upper bound. Possibility to recover the solution of a dual problem gives great benefits in different problems, for instance, in some cases, it is faster to find a solution in a primal problem than in a dual problem. Note that primal-dual methods are well studied, but usually each class of optimization problems has its own primal-dual method. Our goal is to develop a method which can find solutions in different classes of optimization problems. This is realized through the use of the conception of $(\delta, L)$-model and adaptive structure of our methods. Thereby, we developed primal-dual adaptive gradient method and fast gradient method with $(\delta, L)$-model and proved convergence rates of the methods, moreover, for some classes of optimization problems the rates are optimal. The main idea is the following: we find a dual solution to an approximation of a primal problem using the conception of $(\delta, L)$-model. It is much easier to find a solution to an approximated problem, however, we have to do it in each step of our method, thereby the principle of “divide and conquer” is realized.

  3. Рябцев А.Б.
    Накопление ошибки в методе сопряженных градиентов для вырожденных задач
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 459-472

    В данной работе рассматривается метод сопряженных градиентов при решении задачи минимизации квадратичной функции с аддитивным шумом в градиенте. Были рассмотрены три концепции шума: враждебный шум в линейном члене, стохастический шум в линейном члене и шум в квадратичном члене, а также комбинации первого и второго с последним. Экспериментально получено, что накопление ошибки отсутствует для любой из рассмотренных концепций, что отличается от фольклорного мнения, что, как и в ускоренных методах, накопление ошибки должно иметь место. В работе приведена мотивировка того, почему ошибка может и не накапливаться. Также экспериментально исследовалась зависимость ошибки решения как от величины (масштаба) шума, так и от размера решения при использовании метода сопряженных градиентов. Предложены и проверены гипотезы о зависимости ошибки в решении от масштаба шума и размера (2-нормы) решения для всех рассмотренных концепций. Оказалось, что ошибка в решении (по функции) линейно зависит от масштаба шума. В работе приведены графики, иллюстрирующие каждое отдельное исследование, а также детальное описание численных экспериментов, включающее в себя изложение способов зашумления как вектора, так и матрицы.

    Ryabtsev A.B.
    The error accumulation in the conjugate gradient method for degenerate problem
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 459-472

    In this paper, we consider the conjugate gradient method for solving the problem of minimizing a quadratic function with additive noise in the gradient. Three concepts of noise were considered: antagonistic noise in the linear term, stochastic noise in the linear term and noise in the quadratic term, as well as combinations of the first and second with the last. It was experimentally obtained that error accumulation is absent for any of the considered concepts, which differs from the folklore opinion that, as in accelerated methods, error accumulation must take place. The paper gives motivation for why the error may not accumulate. The dependence of the solution error both on the magnitude (scale) of the noise and on the size of the solution using the conjugate gradient method was also experimentally investigated. Hypotheses about the dependence of the error in the solution on the noise scale and the size (2-norm) of the solution are proposed and tested for all the concepts considered. It turned out that the error in the solution (by function) linearly depends on the noise scale. The work contains graphs illustrating each individual study, as well as a detailed description of numerical experiments, which includes an account of the methods of noise of both the vector and the matrix.

  4. Агафонов А.Д.
    Нижние оценки для методов типа условного градиента для задач минимизации гладких сильно выпуклых функций
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 213-223

    В данной работе рассматриваются методы условного градиента для оптимизации сильно выпуклых функций. Это методы, использующие линейный минимизационный оракул, то есть умеющие вычислять решение задачи

    $$ \text{Argmin}_{x\in X}{\langle p,\,x \rangle} $$

    для заданного вектора $p \in \mathbb{R}^n$. Существует целый ряд методов условного градиента, имеющих линейную скорость сходимости в сильно выпуклом случае. Однако во всех этих методах в оценку скорости сходимости входит размерность задачи, которая в современных приложениях может быть очень большой. В данной работе доказывается, что в сильно выпуклом случае скорость сходимости методов условного градиента в лучшем случае зависит от размерности задачи $n$ как $\widetilde{\Omega}\left(\!\sqrt{n}\right)$. Таким образом, методы условного градиента могут оказаться неэффективными для решения сильно выпуклых оптимизационных задач больших размерностей.

    Отдельно рассматривается приложение методов условного градиента к задачам минимизации квадратичной формы. Уже была доказана эффективность метода Франк – Вульфа для решения задачи квадратичной оптимизации в выпуклом случае на симплексе (PageRank). Данная работа показывает, что использование методов условного градиента для минимизации квадратичной формы в сильно выпуклом случае малоэффективно из-за наличия размерности в оценке скорости сходимости этих методов. Поэтому рассматривается метод рестартов условного градиента (Shrinking Conditional Gradient). Его отличие от методов условного градиента заключается в том, что в нем используется модифицированный линейный минимизационный оракул, который для заданного вектора $p \in \mathbb{R}^n$ вычисляет решение задачи $$ \text{Argmin}\{\langle p, \,x \rangle\colon x\in X, \;\|x-x_0^{}\| \leqslant R \}. $$ В оценку скорости сходимости такого алгоритма размерность уже не входит. С помощью рестартов метода условного градиента получена сложность (число арифметических операций) минимизации квадратичной формы на $\infty$-шаре. Полученная оценка работы метода сравнима со сложностью градиентного метода.

    Agafonov A.D.
    Lower bounds for conditional gradient type methods for minimizing smooth strongly convex functions
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 213-223

    In this paper, we consider conditional gradient methods for optimizing strongly convex functions. These are methods that use a linear minimization oracle, which, for a given vector $p \in \mathbb{R}^n$, computes the solution of the subproblem

    \[ \text{Argmin}_{x\in X}{\langle p,\,x \rangle}. \]There are a variety of conditional gradient methods that have a linear convergence rate in a strongly convex case. However, in all these methods, the dimension of the problem is included in the rate of convergence, which in modern applications can be very large. In this paper, we prove that in the strongly convex case, the convergence rate of the conditional gradient methods in the best case depends on the dimension of the problem $ n $ as $ \widetilde {\Omega} \left(\!\sqrt {n}\right) $. Thus, the conditional gradient methods may turn out to be ineffective for solving strongly convex optimization problems of large dimensions.

    Also, the application of conditional gradient methods to minimization problems of a quadratic form is considered. The effectiveness of the Frank – Wolfe method for solving the quadratic optimization problem in the convex case on a simplex (PageRank) has already been proved. This work shows that the use of conditional gradient methods to solve the minimization problem of a quadratic form in a strongly convex case is ineffective due to the presence of dimension in the convergence rate of these methods. Therefore, the Shrinking Conditional Gradient method is considered. Its difference from the conditional gradient methods is that it uses a modified linear minimization oracle. It's an oracle, which, for a given vector $p \in \mathbb{R}^n$, computes the solution of the subproblem \[ \text{Argmin}\{\langle p, \,x \rangle\colon x\in X, \;\|x-x_0^{}\| \leqslant R \}. \] The convergence rate of such an algorithm does not depend on dimension. Using the Shrinking Conditional Gradient method the complexity (the total number of arithmetic operations) of solving the minimization problem of quadratic form on a $ \infty $-ball is obtained. The resulting evaluation of the method is comparable to the complexity of the gradient method.

  5. Чуканов С.Н., Першина Е.Л.
    Формирование оптимального управления нелинейным динамическим объектом на основе модели Такаги–Сугено
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 51-59

    В работе рассмотрен алгоритм нечеткой системы управления существенно нелинейным динамическим объектом. Для решения нелинейной задачи оптимального управления предлагается использовать линейно-квадратичное регулирование (LQR — linear quadratic regulator) с моделью Такаги–Сугено (Takagi–Sugeno). Алгоритм может быть использован для проектирования систем оптимального управления детерминированными нелинейными объектами. Предложено использование алгоритма функционирования оптимальной системы управления для управления вращательным движением летательного аппарата.

    Chukanov S.N., Pershina E.L.
    Formation of optimal control of nonlinear dynamic object based on Takagi–Sugeno model
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 51-59

    The algorithm of fuzzy control system essentially nonlinear dynamic object is considered in this article. For solving nonlinear optimal control problem is proposed to use the method of linear quadratic regulation (LQR) with fuzzy Takagi–Sugeno model. The algorithm can be used for the design of deterministic optimal control of nonlinear objects. The algorithm of optimal control for controlling the rotational motion of a space vehicle is proposed.

    Views (last year): 2.
  6. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703

    Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.

    В данной работе этот алгоритм лежит в основе решения следующих задач.

    Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.

    Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.

    Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.

    Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Newton methods
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703

    We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.

    In this paper, this algorithm is the basis for solving the following problems:

    Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.

    Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.

    Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.

    Views (last year): 7. Citations: 1 (RSCI).
  7. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Квадратичное программирование
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 407-420

    Рассматривается численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество метода состоит в расчете факторов Холесского для положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью LU-разложения, просто другая схема реализации метода исключения Гаусса.

    Расчет факторов Холесского для положительно определенной матрицы системы и ее решение лежит в основе построения новой математической формулировки безусловной задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности, которые достаточно просты и в данной работе используются для построения новой математической формулировки задачи квадратичного программирования на многогранном множестве ограничений, которая представляет собой задачу поиска минимального расстояния между началом координат и точкой границы многогранного множества ограничений средствами линейной алгебры и многомерной геометрии.

    Для определения расстояния предлагается применить известный точный метод, основанный на решении систем линейных уравнений, размерность которых не выше числа переменных целевой функции. Расстояния определяются построением перпендикуляров к граням многогранника различной размерности. Для уменьшения числа исследуемых граней предлагаемый метод предусматривает специальный порядок перебора граней. Исследованию подлежат только грани, содержащие вершину, ближайшую к точке безусловного экстремума, и видимые из этой точки. В случае наличия нескольких ближайших равноудаленных вершин исследуется грань, содержащая все эти вершины, и грани меньшей размерности, имеющие с первой гранью не менее двух общих ближайших вершин.

    Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Quadratic programming
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 407-420

    A numerically stable direct multiplicative method for solving systems of linear equations that takes into account the sparseness of matrices presented in a packed form is considered. The advantage of the method is the calculation of the Cholesky factors for a positive definite matrix of the system of equations and its solution within the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made to the position of the next processed row of the matrix, which allows using static data storage formats. The solution of the system of linear equations by a direct multiplicative algorithm is, like the solution with LU-decomposition, just another scheme for implementing the Gaussian elimination method.

    The calculation of the Cholesky factors for a positive definite matrix of the system and its solution underlies the construction of a new mathematical formulation of the unconditional problem of quadratic programming and a new form of specifying necessary and sufficient conditions for optimality that are quite simple and are used in this paper to construct a new mathematical formulation for the problem of quadratic programming on a polyhedral set of constraints, which is the problem of finding the minimum distance between the origin ordinate and polyhedral boundary by means of a set of constraints and linear algebra dimensional geometry.

    To determine the distance, it is proposed to apply the known exact method based on solving systems of linear equations whose dimension is not higher than the number of variables of the objective function. The distances are determined by the construction of perpendiculars to the faces of a polyhedron of different dimensions. To reduce the number of faces examined, the proposed method involves a special order of sorting the faces. Only the faces containing the vertex closest to the point of the unconditional extremum and visible from this point are subject to investigation. In the case of the presence of several nearest equidistant vertices, we investigate a face containing all these vertices and faces of smaller dimension that have at least two common nearest vertices with the first face.

    Views (last year): 32.
  8. Гасников А.В., Ковалёв Д.А.
    Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 305-314

    В данной работе приводятся нижние оценки скорости сходимости для класса численных методов выпуклой оптимизации первого порядка и выше, т. е. использующих градиент и старшие производные. Обсуждаются вопросы достижимости данных оценок. Приведенные в статье оценки замыкают известные на данный момент результаты в этой области. Отметим, что замыкание осуществляется без должного обоснования, поэтому в той общности, в которой данные оценки приведены в статье, их стоит понимать как гипотезу. Опишембо лее точно основной результат работы. Пожалуй, наиболее известнымм етодом второго порядка является метод Ньютона, использующий информацию о градиенте и матрице Гессе оптимизируемой функции. Однако даже для сильно выпуклых функций метод Ньютона сходится лишь локально. Глобальная сходимость метода Ньютона обеспечивается с помощью кубической регуляризации оптимизируемой на каждом шаге квадратичной модели функции [Nesterov, Polyak, 2006]. Сложность решения такой вспомогательной задачи сопоставима со сложностью итерации обычного метода Ньютона, т. е. эквивалентна по порядку сложности обращения матрицы Гессе оптимизируемой функции. В 2008 году Ю. Е. Нестеровымбыл предложен ускоренный вариант метода Ньютона с кубической регуляризацией [Nesterov, 2008]. В 2013 г. Monteiro – Svaiter сумели улучшить оценку глобальной сходимости ускоренного метода с кубической регуляризацией [Monteiro, Svaiter, 2013]. В 2017 году Arjevani – Shamir – Shiff показали, что оценка Monteiro – Svaiter оптимальна (не может быть улучшена более чем на логарифми- ческий множитель на классе методов 2-го порядка) [Arjevani et al., 2017]. Также удалось получить вид нижних оценок для методов порядка $p ≥ 2$ для задач выпуклой оптимизации. Отметим, что при этом для сильно выпуклых функций нижние оценки были получены только для методов первого и второго порядка. В 2018 году Ю. Е. Нестеров для выпуклых задач оптимизации предложил методы 3-го порядка, которые имеют сложность итерации сопоставимую со сложностью итерации метода Ньютона и сходятся почти по установленным нижним оценкам [Nesterov, 2018]. Таким образом, было показано, что методы высокого порядка вполне могут быть практичными. В данной работе приводятся нижние оценки для методов высокого порядка $p ≥ 3$ для сильно выпуклых задач безусловной оптимизации. Работа также может рассматриваться как небольшой обзор современного состояния развития численных методов выпуклой оптимизации высокого порядка.

    Gasnikov A.V., Kovalev D.A.
    A hypothesis about the rate of global convergence for optimal methods (Newton’s type) in smooth convex optimization
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 305-314

    In this paper we discuss lower bounds for convergence of convex optimization methods of high order and attainability of this bounds. We formulate a hypothesis that covers all the cases. It is noticeable that we provide this statement without a proof. Newton method is the most famous method that uses gradient and Hessian of optimized function. However, it converges locally even for strongly convex functions. Global convergence can be achieved with cubic regularization of Newton method [Nesterov, Polyak, 2006], whose iteration cost is comparable with iteration cost of Newton method and is equivalent to inversion of Hessian of optimized function. Yu.Nesterov proposed accelerated variant of Newton method with cubic regularization in 2008 [Nesterov, 2008]. R.Monteiro and B. Svaiter managed to improve global convergence of cubic regularized method in 2013 [Monteiro, Svaiter, 2013]. Y.Arjevani, O. Shamir and R. Shiff showed that convergence bound of Monteiro and Svaiter is optimal (cannot be improved by more than logarithmic factor with any second order method) in 2017 [Arjevani et al., 2017]. They also managed to find bounds for convex optimization methods of p-th order for $p ≥ 2$. However, they got bounds only for first and second order methods for strongly convex functions. In 2018 Yu.Nesterov proposed third order convex optimization methods with rate of convergence that is close to this lower bounds and with similar to Newton method cost of iteration [Nesterov, 2018]. Consequently, it was showed that high order methods can be practical. In this paper we formulate lower bounds for p-th order methods for $p ≥ 3$ for strongly convex unconstrained optimization problems. This paper can be viewed as a little survey of state of the art of high order optimization methods.

    Views (last year): 21. Citations: 1 (RSCI).
  9. Гладин Е.Л., Зайнуллина К.Э.
    Метод эллипсоидов для задач выпуклой стохастической оптимизации малой размерности
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1137-1147

    В статье рассматривается задача минимизации математического ожидания выпуклой функции. Задачи такого вида повсеместны в машинном обучении, а также часто возникают в ряде других приложений. На практике для их решения обычно используются процедуры типа стохастического градиентного спуска (SGD). В нашей работе предлагается решать такие задачи с использованием метода эллипсоидов с мини-батчингом. Алгоритм имеет линейную скорость сходимости и может оказаться эффективнее SGD в ряде задач. Это подтверждается в наших экспериментах, исходный код которых находится в открытом доступе. Для получения линейной скорости сходимости метода не требуется ни гладкость, ни сильная выпуклость целевой функции. Таким образом, сложность алгоритма не зависит от обусловленности задачи. В работе доказывается, что метод эллипсоидов с наперед заданной вероятностью находит решение с желаемой точностью при использовании мини-батчей, размер которых пропорционален точности в степени -2. Это позволяет выполнять алгоритм параллельно на большом числе процессоров, тогда как возможности для батчараллелизации процедур типа стохастического градиентного спуска весьма ограничены. Несмотря на быструю сходимость, общее количество вычислений градиента для метода эллипсоидов может получиться больше, чем для SGD, который неплохо сходится и при маленьком размере батча. Количество итераций метода эллипсоидов квадратично зависит от размерности задачи, поэтому метод подойдет для относительно небольших размерностей.

    Gladin E.L., Zainullina K.E.
    Ellipsoid method for convex stochastic optimization in small dimension
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1137-1147

    The article considers minimization of the expectation of convex function. Problems of this type often arise in machine learning and a variety of other applications. In practice, stochastic gradient descent (SGD) and similar procedures are usually used to solve such problems. We propose to use the ellipsoid method with mini-batching, which converges linearly and can be more efficient than SGD for a class of problems. This is verified by our experiments, which are publicly available. The algorithm does not require neither smoothness nor strong convexity of the objective to achieve linear convergence. Thus, its complexity does not depend on the conditional number of the problem. We prove that the method arrives at an approximate solution with given probability when using mini-batches of size proportional to the desired accuracy to the power −2. This enables efficient parallel execution of the algorithm, whereas possibilities for batch parallelization of SGD are rather limited. Despite fast convergence, ellipsoid method can result in a greater total number of calls to oracle than SGD, which works decently with small batches. Complexity is quadratic in dimension of the problem, hence the method is suitable for relatively small dimensionalities.

  10. Базарова А.И., Безносиков А.Н., Гасников А.В.
    Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255

    Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.

    В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.

    Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.

    Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.

    Bazarova A.I., Beznosikov A.N., Gasnikov A.V.
    Linearly convergent gradient-free methods for minimization of parabolic approximation
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255

    Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.

    In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.

    In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.

    Experimental results confirm the efficiency and practical applicability of all the obtained methods.

Pages: previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"