All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Метод обработки данных акустико-эмиссионного контроля для определения скорости и локации каждого сигнала
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1029-1040Акустико-эмиссионный метод неразрушающего контроля является одним из эффективных и экономичных способов обследования сосудов высокого давления для поиска в них скрытых дефектов (трещин, расслоений и др.), а также единственным методом, чувствительным к развивающимся дефектам. Скорость распространения звука в объекте контроля и ее адекватное определение в локационной схеме имеют важнейшее значение для точности локации источника акустической эмиссии. Предложенный в статье метод обработки данных акустической эмиссии позволяет определить координаты источника и наиболее вероятную скорость для каждого сигнала. Метод включает в себя предварительную фильтрацию данных по амплитуде, по разности времен прихода, исключение электромагнитных помех. Далее к ним применяется комплекс численных методов для решения получившихся нелинейных уравнений, в частности метод Ньютона–Канторовича и общий итерационный процесс. Скорость распространения сигнала от одного источника принимается постоянной во всех направлениях. В качестве начального приближения берется центр тяжести треугольника, образованного первыми тремя датчиками, зафиксировавшими сигнал. Разработанный метод имеет важное практическое применение, и в статье приведен пример его апробации при калибровке акустико- эмиссионной системы на производственном объекте (абсорбере очистки углеводородного газа). Описаны критерии предварительной фильтрации данных. Полученные локации хорошо согласуются с местоположениями генерации сигналов, а вычисленные скорости четко отражают разделение акустической волны на волны Лэмба и Рэлея благодаря разноудаленности источников сигналов от датчиков. В статье построен график соответствия усредненной скорости сигнала и расстояния от его источника до ближайшего датчика. Основным достоинством разработанного метода можно считать его способность вычислять и отображать на общей схеме объекта местоположение сигналов, имеющих разные скорости, а не задавать единую скорость для всех сигналов акустической эмиссии в рамках одного расчета. Это позволяет увеличить степень свободы при вычислениях и тем самым увеличить их точность.
Ключевые слова: акустическая эмиссия, метод Ньютона – Канторовича, калибровка, локация, метод итераций, дефекты.
Method for processing acoustic emission testing data to define signal velocity and location
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1029-1040Non-destructive acoustic emission testing is an effective and cost-efficient way to examine pressure vessels for hidden defects (cracks, laminations etc.), as well as the only method that is sensitive to developing defects. The sound velocity in the test object and its adequate definition in the location scheme are of paramount importance for the accurate detection of the acoustic emission source. The acoustic emission data processing method proposed herein comprises a set of numerical methods and allows defining the source coordinates and the most probable velocity for each signal. The method includes pre-filtering of data by amplitude, by time differences, elimination of electromagnetic interference. Further, a set of numerical methods is applied to them to solve the system of nonlinear equations, in particular, the Newton – Kantorovich method and the general iterative process. The velocity of a signal from one source is assumed as a constant in all directions. As the initial approximation is taken the center of gravity of the triangle formed by the first three sensors that registered the signal. The method developed has an important practical application, and the paper provides an example of its approbation in the calibration of an acoustic emission system at a production facility (hydrocarbon gas purification absorber). Criteria for prefiltering of data are described. The obtained locations are in good agreement with the signal generation sources, and the velocities even reflect the Rayleigh-Lamb division of acoustic waves due to the different signal source distances from the sensors. The article contains the dependency graph of the average signal velocity against the distance from its source to the nearest sensor. The main advantage of the method developed is its ability to detect the location of different velocity signals within a single test. This allows to increase the degree of freedom in the calculations, and thereby increase their accuracy.
-
Разработка системы управления беспилотного дистанционно-пилотируемого сельхозсамолета (БДПС) на базе самолета МВ-500
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 315-323В статье приведены промежуточные результаты разработки системы управления дистанционно-пилотируемого сельскохозяйственного самолета (БДПС). Разработана концепция использования автоматизированного комплекса для выполнения авиахимической работ (АХР), предназначенного для обработки полей, акваторий, лесов с целью защиты от вредителей растений, внесения удобрений. Базовым компонентом комплекса является пилотируемый сельскохозяйственный самолет МВ-500 разработки ООО «Фирма «МВЕН» (г. Казань). Использование самолета в беспилотном режиме обеспечит увеличение производительности самолета, увеличит полезную нагрузку.
В статье определен состав комплекса для автоматизации АХР: самолет, наземный пункт автоматизированного управления, бортовая аппаратура для автоматизированного управления самолетом и формирования карты высот обрабатываемого участка, спутниковая система точного позиционирования, необходимая для автоматизации управления самолетом. Самолет оснащается системой автоматизированного управления, обеспечивающей дистанционное управление взлетом и посадкой и автоматическое управление траекторией полета на сверхмалой высоте при выполнении АХР и выполнения пространственных разворотов на границах обрабатываемых участков. Взлет, посадка, вывод самолета в зону выполнения АХР предлагается производить с помощью летчика оператора с наземного пункта управления. Наземный пункт управления должен обеспечивать прием и отображение на экране оператора пилотажно-навигационной информации и нескольких видов с борта самолета. Оператор может управлять поочередно несколькими самолетами на этих этапах полета с помощью органов управления наземного пункта. В дальнейшем планируется автоматизировать и эти этапы полета, оставив за летчиком- оператором функции контроля и возможности дистанционного управления в особых случаях. Для навигации самолета при выполнении АХР на борту установлена аппаратура высокоточного позиционирования RTK (Real Time Kinematic), обеспечивающая измерение с сантиметровой точностью координат и высот самолета относительно базовой станции, установленной в наземном пункте управления. Перед выполнением АХР строится трехмерная цифровая карта обрабатываемого участка путем дополнения существующих кадастровых карт измерениями высот участка, выполняемых с помощью бортовых радио и оптического высотомеров того же самолета.
К настоящему времени изготовлены и протестированы следующие компоненты системы: дистанционно управляемая модель самолета МВ-500 в масштабе 1:5, система спутникового позиционирования; система для получения изображения и телеметрической информации с борта модели; автопилот; методы получения 3-мерных цифровых карт участков и планирования траекторий полета при АХР.
Ключевые слова: авиационно-химические работы, беспилотный дистанционно-пилотируемый самолет, система автоматического управления, планирование траекторий.
Development of the remotely piloted agricultural aircraft (RPAA) control system on the basis of the airplane MV-500
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 315-323Views (last year): 20.The article presents the intermediate results of the development of a control system for a remotely piloted agricultural aircraft (RPAA). The concept of using an automated complex for performing aerochemical work (ACW) designed for processing fields, water areas, forests with the purpose of protection from pests of plants, fertilization is developed. The basic component of the complex is a manned agricultural aircraft MV-500 developed by LLC “Firm “MVEN” (Kazan). The use of the aircraft in unmanned mode will provide an increase in the productivity of the aircraft, will increase the payload.
The article defines the composition of the complex for automation of ACW: aircraft, ground control center, onboard equipment for automated control of the aircraft and the formation of a map of the heights of the section being processed, and the satellite precise positioning system necessary to automate the control of the aircraft. The aircraft is equipped with an automated control system that provides remote control of take-off and landing and automatic control of the flight trajectory at extremely low altitude when performing ACW and performing spatial turns at the boundaries of the treated areas. It is proposed to take off, landing, dropping an aircraft into the ACW exercise area by means of a pilot operator from a ground control station. The ground control point should provide reception and display on the operator's screen of flight information and several types from the aircraft. The operator can control alternately several aircraft during these phases of flight with the help of ground control authorities. In the future, it is planned to automate these stages of flight, leaving behind the pilot-operator control functions and remote control capabilities in special cases. For the navigation of the aircraft, when performing ACW on board, RTK (Real Time Kinematic) equipment is installed, providing a measurement with centimeter accuracy of coordinates and aircraft heights relative to the base station installed in the ground control station. Before the implementation of ACW, a three-dimensional digital map of the processed area is built by adding existing cadastral maps with measurements of the elevations of the section carried out with the help of on-board radio and optical altimeters of the same aircraft.
To date, the following system components have been manufactured and tested: a remotely controlled model of the MV-500 aircraft at a scale of 1:5, a satellite positioning system; system for obtaining images and telemetry information from the board model; autopilot; methods of obtaining three-dimensional digital maps of sections and planning flight trajectories for ACW.
-
Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.
Ключевые слова: динамика разреженных газов, бинарные газовые смеси, кинетическое уравнение Больцмана, проекционный метод, численное моделирование, структура ударной волны.
Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.
-
Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.
В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.
Ключевые слова: человеческий контроль, прерывистость, неопределенность, гистерезис, случайные процессы, стохастические дифференциальные уравнения.
Dynamical trap model for stimulus – response dynamics of human control
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 79-87We present a novel model for the dynamical trap of the stimulus – response type that mimics human control over dynamic systems when the bounded capacity of human cognition is a crucial factor. Our focus lies on scenarios where the subject modulates a control variable in response to a certain stimulus. In this context, the bounded capacity of human cognition manifests in the uncertainty of stimulus perception and the subsequent actions of the subject. The model suggests that when the stimulus intensity falls below the (blurred) threshold of stimulus perception, the subject suspends the control and maintains the control variable near zero with accuracy determined by the control uncertainty. As the stimulus intensity grows above the perception uncertainty and becomes accessible to human cognition, the subject activates control. Consequently, the system dynamics can be conceptualized as an alternating sequence of passive and active modes of control with probabilistic transitions between them. Moreover, these transitions are expected to display hysteresis due to decision-making inertia.
Generally, the passive and active modes of human control are governed by different mechanisms, posing challenges in developing efficient algorithms for their description and numerical simulation. The proposed model overcomes this problem by introducing the dynamical trap of the stimulus-response type, which has a complex structure. The dynamical trap region includes two subregions: the stagnation region and the hysteresis region. The model is based on the formalism of stochastic differential equations, capturing both probabilistic transitions between control suspension and activation as well as the internal dynamics of these modes within a unified framework. It reproduces the expected properties in control suspension and activation, probabilistic transitions between them, and hysteresis near the perception threshold. Additionally, in a limiting case, the model demonstrates the capability of mimicking a similar subject’s behavior when (1) the active mode represents an open-loop implementation of locally planned actions and (2) the control activation occurs only when the stimulus intensity grows substantially and the risk of the subject losing the control over the system dynamics becomes essential.
-
Компьютерное моделирование магнитных систем некоторых физических установок
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 189-198В данной работе приводятся результаты численного моделирования сверхпроводящей магнитной фокусирующей системы. При моделировании этой системы проводился дополнительный контроль точности аппроксимации условия u(∞)=0 с использованием метода Ричардсона. В работе представлены также некоторые результаты сравнения расчетного распределения магнитного поля с проведенными измерениями поля модифицированного магнита СП-40 физической установки «МАРУСЯ». Полученные результаты расчетов магнитных систем используются для проведения компьютерного моделирования физических установок и эксперимента на них, а в последующем, после проведения сеансов набора физических данных, будут использованы для обработки эксперимента.
Computer modeling of magnet systems for physical setups
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 189-198Views (last year): 4. Citations: 2 (RSCI).This work gives results of numerical simulation of a superconducting magnetic focusing system. While modeling this system, special care was taken to achieve approximation accuracy over the condition u(∞)=0 by using Richardson method. The work presents the results of comparison of the magnetic field calculated distribution with measurements of the field performed on a modified magnet SP-40 of “MARUSYA” physical installation. This work also presents some results of numeric analysis of magnetic systems of “MARUSYA” physical installation with the purpose to study an opportunity of designing magnetic systems with predetermined characteristics of the magnetic field.
-
Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.
Ключевые слова: борщевик Сосновского, инвазивные растения, Google Earth Engine, машинное обучение, случайный лес.
Monitoring the spread of Sosnowskyi’s hogweed using a random forest machine learning algorithm in Google Earth Engine
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1357-1370Examining the spectral response of plants from data collected using remote sensing has a lot of potential for solving real-world problems in different fields of research. In this study, we have used the spectral property to identify the invasive plant Heracleum sosnowskyi Manden from satellite imagery. H. sosnowskyi is an invasive plant that causes many harms to humans, animals and the ecosystem at large. We have used data collected from the years 2018 to 2020 containing sample geolocation data from the Moscow Region where this plant exists and we have used Sentinel-2 imagery for the spectral analysis towards the aim of detecting it from the satellite imagery. We deployed a Random Forest (RF) machine learning model within the framework of Google Earth Engine (GEE). The algorithm learns from the collected data, which is made up of 12 bands of Sentinel-2, and also includes the digital elevation together with some spectral indices, which are used as features in the algorithm. The approach used is to learn the biophysical parameters of H. sosnowskyi from its reflectances by fitting the RF model directly from the data. Our results demonstrate how the combination of remote sensing and machine learning can assist in locating H. sosnowskyi, which aids in controlling its invasive expansion. Our approach provides a high detection accuracy of the plant, which is 96.93%.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"