Результаты поиска по 'uncertainty':
Найдено статей: 15
  1. Polosin V.G.
    Quantile shape measures for heavy-tailed distributions
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1041-1077

    Currently, journal papers contain numerous examples of the use of heavy-tailed distributions for applied research on various complex systems. Models of extreme data are usually limited to a small set of distribution shapes that in this field of applied research historically been used. It is possible to increase the composition of the set of probability distributions shapes through comparing the measures of the distribution shapes and choosing the most suitable implementations. The example of a beta distribution of the second kind shown that the lack of definability of the moments of heavy-tailed implementations of the beta family of distributions limits the applicability of the existing classical methods of moments for studying the distributions shapes when are characterized heavy tails. For this reason, the development of new methods for comparing distributions based on quantile shape measures free from the restrictions on the shape parameters remains relevant study the possibility of constructing a space of quantile measures of shapes for comparing distributions with heavy tails. The operation purpose consists in computer research of creation possibility of space of the quantile’s measures for the comparing of distributions property with heavy tails. On the basis of computer simulation there the distributions implementations in measures space of shapes were been shown. Mapping distributions in space only of the parametrical measures of shapes has shown that the imposition of regions for heavy tails distribution made impossible compare the shape of distributions belonging to different type in the space of quantile measures of skewness and kurtosis. It is well known that shape information measures such as entropy and entropy uncertainty interval contain additional information about the shape measure of heavy-tailed distributions. In this paper, a quantile entropy coefficient is proposed as an additional independent measure of shape, which is based on the ratio of entropy and quantile uncertainty intervals. Also estimates of quantile entropy coefficients are obtained for a number of well-known heavy-tailed distributions. The possibility of comparing the distributions shapes with realizations of the beta distribution of the second kind is illustrated by the example of the lognormal distribution and the Pareto distribution. Due to mapping the position of stable distributions in the three-dimensional space of quantile measures of shapes estimate made it possible the shape parameters to of the beta distribution of the second kind, for which shape is closest to the Lévy shape. From the paper material it follows that the display of distributions in the three-dimensional space of quantile measures of the forms of skewness, kurtosis and entropy coefficient significantly expands the possibility of comparing the forms for distributions with heavy tails.

  2. Morozov A.Y., Reviznikov D.L.
    Parametric identification of dynamic systems based on external interval estimates of phase variables
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 299-314

    An important role in the construction of mathematical models of dynamic systems is played by inverse problems, which in particular include the problem of parametric identification. Unlike classical models that operate with point values, interval models give upper and lower boundaries on the quantities under study. The paper considers an interpolation approach to solving interval problems of parametric identification of dynamic systems for the case when experimental data are represented by external interval estimates. The purpose of the proposed approach is to find such an interval estimate of the model parameters, in which the external interval estimate of the solution of the direct modeling problem would contain experimental data or minimize the deviation from them. The approach is based on the adaptive interpolation algorithm for modeling dynamic systems with interval uncertainties, which makes it possible to explicitly obtain the dependence of phase variables on system parameters. The task of minimizing the distance between the experimental data and the model solution in the space of interval boundaries of the model parameters is formulated. An expression for the gradient of the objectivet function is obtained. On a representative set of tasks, the effectiveness of the proposed approach is demonstrated.

  3. The work is devoted to the problem of creating a model with stationary parameters using historical data under conditions of unknown disturbances. The case is considered when a representative sample of object states can be formed using historical data accumulated only over a significant period of time. It is assumed that unknown disturbances can act in a wide frequency range and may have low-frequency and trend components. In such a situation, including data from different time periods in the sample can lead to inconsistencies and greatly reduce the accuracy of the model. The paper provides an overview of approaches and methods for data harmonization. In this case, the main attention is paid to data sampling. An assessment is made of the applicability of various data sampling options as a tool for reducing the level of uncertainty. We propose a method for identifying a self-leveling object model using data accumulated over a significant period of time under conditions of unknown disturbances with a wide frequency range. The method is focused on creating a model with stationary parameters that does not require periodic reconfiguration to new conditions. The method is based on the combined use of sampling and presentation of data from individual periods of time in the form of increments relative to the initial point in time for the period. This makes it possible to reduce the number of parameters that characterize unknown disturbances with a minimum of assumptions that limit the application of the method. As a result, the dimensionality of the search problem is reduced and the computational costs associated with setting up the model are minimized. It is possible to configure both linear and, in some cases, nonlinear models. The method was used to develop a model of closed cooling of steel on a unit for continuous hot-dip galvanizing of steel strip. The model can be used for predictive control of thermal processes and for selecting strip speed. It is shown that the method makes it possible to develop a model of thermal processes from a closed cooling section under conditions of unknown disturbances, including low-frequency components.

  4. Lubashevsky I.A., Lubashevskiy V.I.
    Dynamical trap model for stimulus – response dynamics of human control
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 79-87

    We present a novel model for the dynamical trap of the stimulus – response type that mimics human control over dynamic systems when the bounded capacity of human cognition is a crucial factor. Our focus lies on scenarios where the subject modulates a control variable in response to a certain stimulus. In this context, the bounded capacity of human cognition manifests in the uncertainty of stimulus perception and the subsequent actions of the subject. The model suggests that when the stimulus intensity falls below the (blurred) threshold of stimulus perception, the subject suspends the control and maintains the control variable near zero with accuracy determined by the control uncertainty. As the stimulus intensity grows above the perception uncertainty and becomes accessible to human cognition, the subject activates control. Consequently, the system dynamics can be conceptualized as an alternating sequence of passive and active modes of control with probabilistic transitions between them. Moreover, these transitions are expected to display hysteresis due to decision-making inertia.

    Generally, the passive and active modes of human control are governed by different mechanisms, posing challenges in developing efficient algorithms for their description and numerical simulation. The proposed model overcomes this problem by introducing the dynamical trap of the stimulus-response type, which has a complex structure. The dynamical trap region includes two subregions: the stagnation region and the hysteresis region. The model is based on the formalism of stochastic differential equations, capturing both probabilistic transitions between control suspension and activation as well as the internal dynamics of these modes within a unified framework. It reproduces the expected properties in control suspension and activation, probabilistic transitions between them, and hysteresis near the perception threshold. Additionally, in a limiting case, the model demonstrates the capability of mimicking a similar subject’s behavior when (1) the active mode represents an open-loop implementation of locally planned actions and (2) the control activation occurs only when the stimulus intensity grows substantially and the risk of the subject losing the control over the system dynamics becomes essential.

  5. Kolchev A.A., Nedopekin A.E.
    On one particular model of a mixture of the probability distributions in the radio measurements
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 563-568

    This paper presents a model mixture of probability distributions of signal and noise. Typically, when analyzing the data under conditions of uncertainty it is necessary to use nonparametric tests. However, such an analysis of nonstationary data in the presence of uncertainty on the mean of the distribution and its parameters may be ineffective. The model involves the implementation of a case of a priori non-parametric uncertainty in the processing of the signal at a time when the separation of signal and noise are related to different general population, is feasible.

    Views (last year): 3. Citations: 7 (RSCI).
  6. Varshavsky L.E.
    Uncertainty factor in modeling dynamics of economic systems
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 261-276

    Analysis and practical aspects of implementing developed in the control theory robust control methods in studying economic systems is carried out. The main emphasis is placed on studying results obtained for dynamical systems with structured uncertainty. Practical aspects of implementing such results in control of economic systems on the basis of dynamical models with uncertain parameters and perturbations (stabilization of price on the oil market and inflation in macroeconomic systems) are discussed. With the help of specially constructed aggregate model of oil price dynamics studied the problem of finding control which provides minimal deviation of price from desired levels over middle range period. The second real problem considered in the article consists in determination of stabilizing control providing minimal deviation of inflation from desired levels (on the basis of constructed aggregate macroeconomic model of the USA over middle range period).

    Upper levels of parameters uncertainty and control laws guaranteeing stabilizability of the real considered economic systems have been found using the robust method of control with structured uncertainty. At the same time we have come to the conclusion that received estimates of parameters uncertainty upper levels are conservative. Monte-Carlo experiments carried out for the article made it possible to analyze dynamics of oil price and inflation under received limit levels of models parameters uncertainty and under implementing found robust control laws for the worst and the best scenarios. Results of these experiments show that received robust control laws may be successfully used under less stringent uncertainty constraints than it is guaranteed by sufficient conditions of stabilization.

    Views (last year): 39.
  7. Katasev A.S.
    Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492

    This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.

    Views (last year): 12.
  8. Orlova E.V.
    Model for operational optimal control of financial recourses distribution in a company
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 343-358

    A critical analysis of existing approaches, methods and models to solve the problem of financial resources operational management has been carried out in the article. A number of significant shortcomings of the presented models were identified, limiting the scope of their effective usage. There are a static nature of the models, probabilistic nature of financial flows are not taken into account, daily amounts of receivables and payables that significantly affect the solvency and liquidity of the company are not identified. This necessitates the development of a new model that reflects the essential properties of the planning financial flows system — stochasticity, dynamism, non-stationarity.

    The model for the financial flows distribution has been developed. It bases on the principles of optimal dynamic control and provides financial resources planning ensuring an adequate level of liquidity and solvency of a company and concern initial data uncertainty. The algorithm for designing the objective cash balance, based on principles of a companies’ financial stability ensuring under changing financial constraints, is proposed.

    Characteristic of the proposed model is the presentation of the cash distribution process in the form of a discrete dynamic process, for which a plan for financial resources allocation is determined, ensuring the extremum of an optimality criterion. Designing of such plan is based on the coordination of payments (cash expenses) with the cash receipts. This approach allows to synthesize different plans that differ in combinations of financial outflows, and then to select the best one according to a given criterion. The minimum total costs associated with the payment of fines for non-timely financing of expenses were taken as the optimality criterion. Restrictions in the model are the requirement to ensure the minimum allowable cash balances for the subperiods of the planning period, as well as the obligation to make payments during the planning period, taking into account the maturity of these payments. The suggested model with a high degree of efficiency allows to solve the problem of financial resources distribution under uncertainty over time and receipts, coordination of funds inflows and outflows. The practical significance of the research is in developed model application, allowing to improve the financial planning quality, to increase the management efficiency and operational efficiency of a company.

    Views (last year): 33.
  9. Belotelov N.V., Loginov F.V.
    The agent model of intercultural interactions: the emergence of cultural uncertainties
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1143-1162

    The article describes a simulation agent-based model of intercultural interactions in a country whose population belongs to different cultures. It is believed that the space of cultures can be represented as a Hilbert space, in which certain subspaces correspond to different cultures. In the model, the concept of culture is understood as a structured subspace of the Hilbert space. This makes it possible to describe the state of agents by a vector in a Hilbert space. It is believed that each agent is described by belonging to a certain «culture». The number of agents belonging to certain cultures is determined by demographic processes that correspond to these cultures, the depth and integrity of the educational process, as well as the intensity of intercultural contacts. Interaction between agents occurs within clusters, into which, according to certain criteria, the entire set of agents is divided. When agents interact according to a certain algorithm, the length and angle that characterize the state of the agent change. In the process of imitation, depending on the number of agents belonging to different cultures, the intensity of demographic and educational processes, as well as the intensity of intercultural contacts, aggregates of agents (clusters) are formed, the agents of which belong to different cultures. Such intercultural clusters do not entirely belong to any of the cultures initially considered in the model. Such intercultural clusters create uncertainties in cultural dynamics. The paper presents the results of simulation experiments that illustrate the influence of demographic and educational processes on the dynamics of intercultural clusters. The issues of the development of the proposed approach to the study (discussion) of the transitional states of the development of cultures are discussed.

  10. Plokhotnikov K.E.
    The problem of choosing solutions in the classical format of the description of a molecular system
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600

    The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"