Результаты поиска по 'модель функции':
Найдено статей: 166
  1. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

    Bogomolov S.V.
    Stochastic formalization of the gas dynamic hierarchy
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 767-779

    Mathematical models of gas dynamics and its computational industry, in our opinion, are far from perfect. We will look at this problem from the point of view of a clear probabilistic micro-model of a gas from hard spheres, relying on both the theory of random processes and the classical kinetic theory in terms of densities of distribution functions in phase space, namely, we will first construct a system of nonlinear stochastic differential equations (SDE), and then a generalized random and nonrandom integro-differential Boltzmann equation taking into account correlations and fluctuations. The key feature of the initial model is the random nature of the intensity of the jump measure and its dependence on the process itself.

    Briefly recall the transition to increasingly coarse meso-macro approximations in accordance with a decrease in the dimensionalization parameter, the Knudsen number. We obtain stochastic and non-random equations, first in phase space (meso-model in terms of the Wiener — measure SDE and the Kolmogorov – Fokker – Planck equations), and then — in coordinate space (macro-equations that differ from the Navier – Stokes system of equations and quasi-gas dynamics systems). The main difference of this derivation is a more accurate averaging by velocity due to the analytical solution of stochastic differential equations with respect to the Wiener measure, in the form of which an intermediate meso-model in phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is placed on the transparency of assumptions during the transition from one level of detail to another, and not on numerical experiments, which contain additional approximation errors.

    The theoretical power of the microscopic representation of macroscopic phenomena is also important as an ideological support for particle methods alternative to difference and finite element methods.

  2. Жданова О.Л., Жданов В.С., Неверова Г.П.
    Моделирование динамики планктонного сообщества с учетом токсичности фитопланктона
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1301-1323

    Предложена трехкомпонентная модельпланк тонного сообщества с дискретным временем. Сообщество представлено зоопланктоном и двумя конкурирующими за ресурсы видами фитопланктона: токсичным и нетоксичным. Модельдв ух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух видов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из видов-конкурентов доступностью внешних ресурсов. Изъятие фитопланктона за счет питания зоопланктоном описывается трофической функцией Холлинга II типа с учетом насыщения хищника. Способность фитопланктона защищаться от хищничества и избирательность питания хищника учтены в виде ограничения потребления: зоопланктон питается только нетоксичным фитопланктоном.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего сосуществованию двух видов фитопланктона и зоопланктона, может происходитьч ерез каскад бифуркаций удвоения периода, также возникает бифуркация Неймарка – Сакера, ведущая к возникновению квазипериодических колебаний. Вариация внутрипопуляционных параметров фито- или зоопланктона может приводитьк выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. В областях мультистабильности возможна кардинальная смена как динамического режима, так и состава сообщества за счет изменения начальных условий или же текущего состава сообщества. Предложенная в данной работе трехкомпонентная модель динамики сообщества с дискретным временем, являясь достаточно простой, позволяет получитьадекв атную динамику взаимодействующих видов: возникают динамические режимы, отражающие основные свойства экспериментальной динамики. Так, наблюдается динамика характерная для модели «хищник–жертва» без учета эволюции — с отставанием динамики хищника от жертвы примерно на четвертьперио да. Рассмотрение генетической неоднородности фитопланктона, даже в случае выделения всего двух генетически различных форм: токсичного и нетоксичного, позволяет наблюдатьв модели как длиннопериодические противофазные циклы хищника и жертвы, так и скрытые циклы, при которых плотностьч исленности жертв остается практически постоянной, а плотность численности хищников колеблется, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие видов.

    Zhdanova O.L., Zhdanov V.S., Neverova G.P.
    Modeling the dynamics of plankton community considering phytoplankton toxicity
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1301-1323

    We propose a three-component discrete-time model of the phytoplankton-zooplankton community, in which toxic and non-toxic species of phytoplankton compete for resources. The use of the Holling functional response of type II allows us to describe an interaction between zooplankton and phytoplankton. With the Ricker competition model, we describe the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.). Many phytoplankton species, including diatom algae, are known not to release toxins if they are not damaged. Zooplankton pressure on phytoplankton decreases in the presence of toxic substances. For example, Copepods are selective in their food choices and avoid consuming toxin-producing phytoplankton. Therefore, in our model, zooplankton (predator) consumes only non-toxic phytoplankton species being prey, and toxic species phytoplankton only competes with non-toxic for resources.

    We study analytically and numerically the proposed model. Dynamic mode maps allow us to investigate stability domains of fixed points, bifurcations, and the evolution of the community. Stability loss of fixed points is shown to occur only through a cascade of period-doubling bifurcations. The Neimark – Sacker scenario leading to the appearance of quasiperiodic oscillations is found to realize as well. Changes in intrapopulation parameters of phytoplankton or zooplankton can lead to abrupt transitions from regular to quasi-periodic dynamics (according to the Neimark – Sacker scenario) and further to cycles with a short period or even stationary dynamics. In the multistability areas, an initial condition variation with the unchanged values of all model parameters can shift the current dynamic mode or/and community composition.

    The proposed discrete-time model of community is quite simple and reveals dynamics of interacting species that coincide with features of experimental dynamics. In particular, the system shows behavior like in prey-predator models without evolution: the predator fluctuations lag behind those of prey by about a quarter of the period. Considering the phytoplankton genetic heterogeneity, in the simplest case of two genetically different forms: toxic and non-toxic ones, allows the model to demonstrate both long-period antiphase oscillations of predator and prey and cryptic cycles. During the cryptic cycle, the prey density remains almost constant with fluctuating predators, which corresponds to the influence of rapid evolution masking the trophic interaction.

  3. Подлипнова И.В., Персиянов М.И., Швецов В.И., Гасникова Е.В.
    Транспортное моделирование: усреднение ценовых матриц
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 317-327

    В данной работе рассматриваются различные подходы к усреднению обобщенных цен передвижений, рассчитанных для разных способов передвижения в транспортной сети. Под способом передвижения понимается как вид транспорта, например легковой автомобиль или транспорт общего пользования, так и передвижение без использования транспорта, например пешком. Задача расчета матриц передвижений включает в себя задачу вычисления суммарных матриц, иными словами — оценку общего спроса на передвижения всеми способами, а также задачу расщепления матриц по способам передвижений, называемого также модальным расщеплением. Для расчета матриц передвижений используют гравитационные, энтропийные и иные модели, в которых вероятность передвижения между районами оценивается на основе некоторой меры удаленности этих районов друг от друга. Обычно в качестве меры дальности используется обобщенная цена передвижения по оптимальному пути между районами. Однако обобщенная цена передвижения отличается для разных способов передвижения. При расчете суммарных матриц передвижений возникает необходимость усреднения обобщенных цен по способам передвижения. К процедуре усреднения предъявляется естественное требование монотонности по всем аргументам. Этому требованию не удовлетворяют некоторые часто применяемые на практике способы усреднения, например усреднение с весами. Задача модального расщепления решается применением методов теории дискретного выбора. В частности, в рамках теории дискретного выбора разработаны корректные методы усреднения полезности альтернатив, монотонные по всем аргументам. Авторы предлагают некоторую адаптацию методов теории дискретного выбора для применения к вычислению усредненной цены передвижений в гравитационной и энтропийной моделях. Перенос формул усреднения из контекста модели модального расщепления в модель расчета матриц передвижений требует ввода новых параметров и вывода условий на возможное значение этих параметров, что и было проделано в данной статье. Также были рассмотрены вопросы перекалибровки гравитационной функции, необходимой при переходе на новый метод усреднения, если имеющаяся функция откалибрована с учетом использования средневзвешенной цены. Предложенные методики были реализованы на примере небольшого фрагмента транспортной сети. Приведены результаты расчетов, демонстрирующие преимущество предложенных методов.

    Podlipnova I.V., Persiianov M.I., Shvetsov V.I., Gasnikova E.V.
    Transport modeling: averaging price matrices
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 317-327

    This paper considers various approaches to averaging the generalized travel costs calculated for different modes of travel in the transportation network. The mode of transportation is understood to mean both the mode of transport, for example, a car or public transport, and movement without the use of transport, for example, on foot. The task of calculating the trip matrices includes the task of calculating the total matrices, in other words, estimating the total demand for movements by all modes, as well as the task of splitting the matrices according to the mode, also called modal splitting. To calculate trip matrices, gravitational, entropy and other models are used, in which the probability of movement between zones is estimated based on a certain measure of the distance of these zones from each other. Usually, the generalized cost of moving along the optimal path between zones is used as a distance measure. However, the generalized cost of movement differs for different modes of movement. When calculating the total trip matrices, it becomes necessary to average the generalized costs by modes of movement. The averaging procedure is subject to the natural requirement of monotonicity in all arguments. This requirement is not met by some commonly used averaging methods, for example, averaging with weights. The problem of modal splitting is solved by applying the methods of discrete choice theory. In particular, within the framework of the theory of discrete choice, correct methods have been developed for averaging the utility of alternatives that are monotonic in all arguments. The authors propose some adaptation of the methods of the theory of discrete choice for application to the calculation of the average cost of movements in the gravitational and entropy models. The transfer of averaging formulas from the context of the modal splitting model to the trip matrix calculation model requires the introduction of new parameters and the derivation of conditions for the possible value of these parameters, which was done in this article. The issues of recalibration of the gravitational function, which is necessary when switching to a new averaging method, if the existing function is calibrated taking into account the use of the weighted average cost, were also considered. The proposed methods were implemented on the example of a small fragment of the transport network. The results of calculations are presented, demonstrating the advantage of the proposed methods.

  4. Башкирцева И.А., Екатеринчук Е.Д., Рязанова Т.В., Сысолятина А.А.
    Математическое моделирование стохастических равновесий и бизнес-циклов модели Гудвина
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 107-118

    В работе рассматривается модель экономической динамики Гудвина, находящаяся под воздействием случайных возмущений. Проведен полный параметрический анализ равновесий и циклов детерминированной системы. Исследованы вероятностные свойства аттракторов стохастической системы с использованием техники функций стохастической чувствительности и метода прямого численного моделирования. Обсуждается явление генерации стохастических бизнес-циклов в зоне, где исходная детерминированная модель имеет лишь устойчивые равновесия.

    Bashkirtseva I.A., Ekaterinchuk E.D., Ryazanova T.V., Sysolyatina A.A.
    Mathematical modeling of stochastic equilibria and business cycles of Goodwin model
    Computer Research and Modeling, 2013, v. 5, no. 1, pp. 107-118

    The Goodwin dynamical model under the random external disturbances is considered. A full parametrical analysis for equlibria and cycles of deterministic model is developed. We study probabilistic properties of stochastic attractors using stochastic sensitivity functions technique and numerical methods. A phenomenon of the generation of stochastic business cycles in the zones of stable equilibria is discussed.

    Views (last year): 5. Citations: 4 (RSCI).
  5. Фирсов А.А., Яранцев Д.А., Леонов С.Б., Иванов В.В.
    Численное моделирование горения этилена в сверхзвуковом потоке воздуха
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 75-86

    В представленной работе обсуждается возможность упрощенного трехмерного нестационарного моделирования процесса плазменно-стимулированного горения газообразного топлива в сверхзвуковом потоке воздуха. Расчеты проводились в программном комплексе FlowVision. В работе выполнен анализ геометрии эксперимента и сделан вывод о ее существенной трехмерности, связанной как с дискретностью подачи топлива в поток, так и с наличием локализованных плазменных образований. Предложен вариант упрощения расчетной геометрии, основанный на симметрии аэродинамического канала и периодичности пространственных неоднородностей. Выполнено тестирование модифицированной $k–\varepsilon$ модели турбулентности FlowVision (KEFV) в условиях сверхзвукового потока. В этих расчетах в области источников тепла и инжекции топлива использовалась подробная сетка без пристеночных функций, а на удаленных от ключевой области поверхностях пристеночные функции были включены. Это позволило существенно уменьшить количество ячеек расчетной сетки. Сложная задача моделирования воспламенения углеводородного топлива при воздействии плазмы была существенно упрощена путем представления плазменных образований как источников тепла и использования одной брутто-реакции для описания горения топлива. На базе геометрии аэродинамического стенда ИАДТ-50 ОИВТ РАН с помощью моделирования в программном комплексе ПК FlowVision проведены калибровка и параметрическая оптимизация подачи газообразного топлива в сверхзвуковой поток. Продемонстрировано хорошее совпадение экспериментальной и синтетической теневой картины потока при инжекции топлива. Проведено моделирование потока для геометрии камеры сгорания Т131 ЦАГИ с инжекцией топлива и генерацией плазмы. В результате моделирования для заданного набора параметров продемонстрировано воспламенение топлива, что совпало с результатами эксперимента. Отмечена важность адаптации расчетной сетки с повышением пространственного разрешения в области объемных источников тепла, моделирующих зону электрического разряда. Достигнуто удовлетворительное качественное совпадение распределений давления, полученных в моделировании и эксперименте.

    Firsov A.A., Yarantsev D.A., Leonov S.B., Ivanov V.V.
    Numerical simulation of ethylene combustion in supersonic air flow
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 75-86

    In the present paper, we discuss the possibility of a simplified three-dimensional unsteady simulation of plasma-assisted combustion of gaseous fuel in a supersonic airflow. Simulation was performed by using FlowVision CFD software. Analysis of experimental geometry show that it has essentially 3D nature that conditioned by the discrete fuel injection into the flow as well as by the presence of the localized plasma filaments. Study proposes a variant of modeling geometry simplification based on symmetry of the aerodynamic duct and periodicity of the spatial inhomogeneities. Testing of modified FlowVision $k–\varepsilon$ turbulence model named «KEFV» was performed for supersonic flow conditions. Based on that detailed grid without wall functions was used the field of heat and near fuel injection area and surfaces remote from the key area was modeled with using of wall functions, that allowed us to significantly reduce the number of cells of the computational grid. Two steps significantly simplified a complex problem of the hydrocarbon fuel ignition by means of plasma generation. First, plasma formations were simulated by volumetric heat sources and secondly, fuel combustion is reduced to one brutto reaction. Calibration and parametric optimization of the fuel injection into the supersonic flow for IADT-50 JIHT RAS wind tunnel is made by means of simulation using FlowVision CFD software. Study demonstrates a rather good agreement between the experimental schlieren photo of the flow with fuel injection and synthetical one. Modeling of the flow with fuel injection and plasma generation for the facility T131 TSAGI combustion chamber geometry demonstrates a combustion mode for the set of experimental parameters. Study emphasizes the importance of the computational mesh adaptation and spatial resolution increasing for the volumetric heat sources that model electric discharge area. A reasonable qualitative agreement between experimental pressure distribution and modeling one confirms the possibility of limited application of such simplified modeling for the combustion in high-speed flow.

    Views (last year): 8. Citations: 3 (RSCI).
  6. Ряшко Л.Б., Слепухина Е.С.
    Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468

    Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.

    Ryashko L.B., Slepukhina E.S.
    Analysis of additive and parametric noise effects on Morris – Lecar neuron model
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 449-468

    This paper is devoted to the analysis of the effect of additive and parametric noise on the processes occurring in the nerve cell. This study is carried out on the example of the well-known Morris – Lecar model described by the two-dimensional system of ordinary differential equations. One of the main properties of the neuron is the excitability, i.e., the ability to respond to external stimuli with an abrupt change of the electric potential on the cell membrane. This article considers a set of parameters, wherein the model exhibits the class 2 excitability. The dynamics of the system is studied under variation of the external current parameter. We consider two parametric zones: the monostability zone, where a stable equilibrium is the only attractor of the deterministic system, and the bistability zone, characterized by the coexistence of a stable equilibrium and a limit cycle. We show that in both cases random disturbances result in the phenomenon of the stochastic generation of mixed-mode oscillations (i. e., alternating oscillations of small and large amplitudes). In the monostability zone this phenomenon is associated with a high excitability of the system, while in the bistability zone, it occurs due to noise-induced transitions between attractors. This phenomenon is confirmed by changes of probability density functions for distribution of random trajectories, power spectral densities and interspike intervals statistics. The action of additive and parametric noise is compared. We show that under the parametric noise, the stochastic generation of mixed-mode oscillations is observed at lower intensities than under the additive noise. For the quantitative analysis of these stochastic phenomena we propose and apply an approach based on the stochastic sensitivity function technique and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable limit cycle, this domain is a confidence band. The study of the mutual location of confidence bands and the boundary separating the basins of attraction for different noise intensities allows us to predict the emergence of noise-induced transitions. The effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimations with results of direct numerical simulations.

    Views (last year): 11.
  7. Кубасова Н.А., Цатурян А.К.
    Молекулярно-динамическая оценка механических свойств фибриллярного актина
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1081-1092

    Актин — консервативный структурный белок, который экспрессируется в клетках всех эукариот. При полимеризации он образует длинные нити фибриллярного актина, или F-актина, которые участвуют в формировании цитоскелета, в мышечном сокращении и его регуляции, а также во многих других процессах. Динамические и механические свойства актина важны для взаимодействия с другими белками и реализации его многочисленных функций в клетке. Мы провели молекулярно-динамические (МД) расчеты сегмента актиновой нити, состоящего из 24 мономеров, в отсутствие и в присутствии MgADP, с явным учетом растворителя и при физиологи- ческой ионной силе при 300 К длительностью 204,8 нс в силовых полях AMBER99SB-ILDN и CHARMM36 в программной среде GROMACS, используя в качестве исходной структуры современные структурные модели, полученные методом криоэлектронной микроскопии высокого разрешения. МД-расчеты показали, что стационарный режим флуктуаций структуры длинного сегмента F-актина вырабатывается через 80–100 нс после начала МД-траектории. По результатам МД-расчетов оценили основные параметры спирали актина и ее изгибную, продольную и торсионную жесткости, используя участок расчетной модели, достаточно далеко отстоящий от ее концов. Оцененные значения шага (2,72–2,75 нм) и угла (165–168) спирали F-актина, его изгибной (2,8–4,7 · 10−26 Н · м2), продольной (36–47 · 10−9 Н) и торсионной (2,6–3,1 · 10−26 Н · м2) жесткости хорошо согласуются с результатами наиболее надежных экспериментов. Результаты МД-расчетов показали, что современные структурные модели F-актина позволяют достаточно аккуратно описать его динамику и механические свойства при условии использования расчет- ных моделей, содержащих достаточно большое количество мономеров, современных силовых полей и относительно длинных МД-траекторий. Включение в МД-модели белков-партнеров актина, в частности тропомиозина и тропонина, может помочь понять молекулярные механизмы таких важных процессов, как регуляция мышечного сокращения.

    Koubassova N.A., Tsaturyan A.K.
    Molecular dynamics assessment of the mechanical properties of fibrillar actin
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1081-1092

    Actin is a conserved structural protein that is expressed in all eukaryotic cells. When polymerized, it forms long filaments of fibrillar actin, or F-actin, which are involved in the formation of the cytoskeleton, in muscle contraction and its regulation, and in many other processes. The dynamic and mechanical properties of actin are important for interaction with other proteins and the realization of its numerous functions in the cell. We performed 204.8 ns long molecular dynamics (MD) simulations of an actin filament segment consisting of 24 monomers in the absence and the presence of MgADP at 300 K in the presence of a solvent and at physiological ionic strength using the AMBER99SBILDN and CHARMM36 force fields in the GROMACS software environment, using modern structural models as the initial structure obtained by high-resolution cryoelectron microscopy. MD calculations have shown that the stationary regime of fluctuations in the structure of the F-actin long segment is developed 80–100 ns after the start of the MD trajectory. Based on the results of MD calculations, the main parameters of the actin helix and its bending, longitudinal, and torsional stiffness were estimated using a section of the calculation model that is far enough away from its ends. The estimated subunit axial (2.72–2.75 nm) and angular (165–168) translation of the F-actin helix, its bending (2.8–4.7 · 10−26 N·m2), longitudinal (36–47·10−9 N), and torsional (2.6–3.1·10−26 N·m2) stiffness are in good agreement with the results of the most reliable experiments. The results of MD calculations have shown that modern structural models of F-actin make it possible to accurately describe its dynamics and mechanical properties, provided that computational models contain a sufficiently large number of monomers, modern force fields, and relatively long MD trajectories are used. The inclusion of actin partner proteins, in particular, tropomyosin and troponin, in the MD model can help to understand the molecular mechanisms of such important processes as the regulation of muscle contraction.

  8. Токарев А.А., Родин Н.О., Вольперт В.А.
    Бистабильность и затухающие колебания в гомогенной модели вирусной инфекции
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 111-124

    Развитие вирусной инфекции в организме представляет собой сложный процесс, зависящий от конкуренции между размножением вируса в клетках организма-хозяина и иммунным ответом. В данной работе для исследования различных режимов развития инфекции мы анализируем общую математическую модель иммунного ответа организма на вирусную инфекцию. Модель представляет собой систему из двух обыкновенных дифференциальных уравнений, описывающих изменение обезразмеренных концентраций вируса и иммунных клеток. Скорость пролиферации иммунных клеток представлена колоколообразной функцией концентрации вируса. Эта функция возрастает при малых концентрациях вируса, описывая антиген-стимулированную клональную экспансию иммунных клеток, и снижается при достаточно высоких концентрациях вируса, описывая подавление пролиферации иммунных клеток инфекцией. В зависимости от вирулентности вируса, силы иммунного ответа и начальной вирусной нагрузки, модель предсказывает несколько сценариев: (а) инфекция может быть полностью устранена, (б) она может оставаться на низком уровне при высокой концентрации иммунных клеток; (в) иммунная система может быть существенно истощена или (г) полностью истощена, что сопровождается (в, г) высокой концентрацией вируса. Анализ модели показывает, что концентрация вируса может колебаться по мере постепенного приближения к своему равновесному значению. Рассматриваемая модель может быть получена при редукции более общей модели — с дополнительным уравнением для общей вирусной нагрузки, в предположении, что общая вирусная нагрузка является быстрой переменной. В случае медленной кинетики общей вирусной нагрузки следует использовать указанную более общую модель.

    Tokarev A.A., Rodin N.O., Volpert V.A.
    Bistability and damped oscillations in the homogeneous model of viral infection
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 111-124

    The development of a viral infection in the organism is a complex process which depends on the competition race between virus replication in the host cells and the immune response. To study different regimes of infection progression, we analyze the general mathematical model of immune response to viral infection. The model consists of two ODEs for virus and immune cells non-dimensionalized concentrations. The proliferation rate of immune cells in the model is represented by a bell-shaped function of the virus concentration. This function increases for small virus concentrations describing the antigen-stimulated clonal expansion of immune cells, and decreases for sufficiently high virus concentrations describing down-regulation of immune cells proliferation by the infection. Depending on the virus virulence, strength of the immune response, and the initial viral load, the model predicts several scenarios: (a) infection can be completely eliminated, (b) it can remain at a low level while the concentration of immune cells is high; (c) immune cells can be essentially exhausted, or (d) completely exhausted, which is accompanied (c, d) by high virus concentration. The analysis of the model shows that virus concentration can oscillate as it gradually converges to its equilibrium value. We show that the considered model can be obtained by the reduction of a more general model with an additional equation for the total viral load provided that this equation is fast. In the case of slow kinetics of the total viral load, this more general model should be used.

  9. Акимов С.В., Борисов Д.В.
    Моделирование центробежных насосов с использованием программного комплекса FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 907-919

    В работе представлена методика моделирования центробежных насосов с использованием программного комплекса (ПК) FlowVision на примере магистрального нефтяного центробежного насоса НМ 1250-260. В качестве рабочего тела как при стендовых испытаниях, так и при численном моделировании используется вода. Расчет проводится в полной трехмерной постановке. Для учета утечек через уплотнения моделирование проводится вместе с корпусом насоса. С целью уменьшения требуемых вычислительных ресурсов в работе предлагается не моделировать течение в уплотнениях напрямую, а задавать утечки с помощью расхода. Влияние шероховатости поверхностей насоса учитывается в модели пристеночных функций. Модель пристеночных функций использует эквивалентную песочную шероховатость, и в работе применяется формула пересчета реальной шероховатости в эквивалентную песочную. Вращение рабочего колеса моделируется с помощью метода скользящих сеток: данный подход полностью учитывает нестационарное взаимодействие между ротором и диффузором насоса, что позволяет с высокой точностью разрешить рециркуляционные вихри, возникающие на режимах с низкой подачей.

    Разработанная методика позволила добиться высокой согласованности результатов моделирования с экспериментом на всех режимах работы насоса. Отклонение на номинальном режиме по КПД составляет 0,42%, по напору — 1,9%. Отклонение расчетных характеристик от экспериментальных растет по мере увеличения подачи и достигает максимума на крайней правой точке характеристики (до 4,8% по напору). При этом среднее арифметическое относительное отклонение между численным моделированием и экспериментом для КПД насоса по шести точкам составляет 0,39% при погрешности измерения КПД в эксперименте 0,72%, что удовлетворяет требованиям к точности расчетов. В дальнейшем данная методика может быть использована для проведения серии оптимизационных и прочностных расчетов, так как моделирование не требует существенных вычислительных ресурсов и учитывает нестационарный характер течения в насосе.

    Akimov S.V., Borisov D.V.
    Centrifugal pump modeling in FlowVision CFD software
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 907-919

    This paper presents a methodology for modeling centrifugal pumps using the example of the NM 1250 260 main oil centrifugal pump. We use FlowVision CFD software as the numerical modeling instrument. Bench tests and numerical modeling use water as a working fluid. The geometrical model of the pump is fully three-dimensional and includes the pump housing to account for leakages. In order to reduce the required computational resources, the methodology specifies leakages using flow rate rather than directly modeling them. Surface roughness influences flow through the wall function model. The wall function model uses an equivalent sand roughness, and a formula for converting real roughness into equivalent sand roughness is applied in this work. FlowVision uses the sliding mesh method for simulation of the rotation of the impeller. This approach takes into account the nonstationary interaction between the rotor and diffuser of the pump, allowing for accurate resolution of recirculation vortices that occur at low flow rates.

    The developed methodology has achieved high consistency between numerical simulations results and experiments at all pump operating conditions. The deviation in efficiency at nominal conditions is 0.42%, and in head is 1.9%. The deviation of calculated characteristics from experimental ones increases as the flow rate increases and reaches a maximum at the far-right point of the characteristic curve (up to 4.8% in head). This phenomenon occurs due to a slight mismatch between the geometric model of the impeller used in the calculation and the real pump model from the experiment. However, the average arithmetic relative deviation between numerical modeling and experiment for pump efficiency at 6 points is 0.39%, with an experimental efficiency measurement error of 0.72%. This meets the accuracy requirements for calculations. In the future, this methodology can be used for a series of optimization and strength calculations, as modeling does not require significant computational resources and takes into account the non-stationary nature of flow in the pump.

  10. Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.

    An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"