Результаты поиска по 'нелокальность':
Найдено статей: 20
  1. Рассматривается эффект Эйнштейна, Подольского, Розена в его связи с квантовой механикой и теорией относительности. Показано, что если ввести в квантовую механику понятие индивидуального состояния квантовой частицы в ансамбле, то можно устранить противоречие с теорией относительности, которое получило название дальнодействия между коррелированными частицами. В работе развит аппарат введения индивидуального состояния в формализм квантовой механики. Строится модель эффекта ЭПР, не содержащая противоречия. Анализируется общий механизм формирования законов теории вероятности в квантовой механике, примером которого является нарушение неравенств Белла для скрытых параметров.

    Koganov A.V.
    Agreement of Relation Theory and EPR Effect by individual state of quantum particle
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 3-34

    We consider effect of Einstein, Podolsky, Rosen in connection with quantum mechanic and relative theory. We sow that may introduce in quantum mechanic the individual state for quantum particle which eliminate the contradiction quantum mechanics with relative theory of type long-range action between correlated particles. In article we develop the apparatus for individual state introducing in quantum mechanic formalism and build the EPR effect model without contradictory. We describe the general mechanism of Bell inequalities infringement and analogical effects.

    Views (last year): 1.
  2. Левченко Е.А., Трифонов А.Ю., Шаповалов А.В.
    Квазиклассическое приближение для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 205-219

    Для многомерного нелокального уравнения Фишера–Колмогорова–Петровского–Пискунова в классе траекторно-сосредоточенных функций построены квазиклассические асимптотики с точностью $O(D^{N/2})$, $N\geqslant3$. С помощью операторов симметрии получен счетный набор асимптотических решений исходного уравнения с точностью $O(D^{3/2})$. В явном виде построены асимптотические решения двумерного уравнения Фишера–Колмогорова–Петровского–Пискунова.

    Levchenko E.A., Trifonov A.Y., Shapovalov A.V.
    Semiclassical approximation for the nonlocal multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 205-219

    Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation are found in explicit
    form.

    Views (last year): 4.
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 5-7
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 5-7
  4. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 521-523
    Editor’s note
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 521-523
  5. Мокин А.Ю.
    О спектральных свойствах одного несамосопряженного разностного оператора
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 143-150

    Рассмотрена задача на собственные значения для несамосопряжённого разностного оператора с переменным коэффициентом. Особенность задачи заключается в нелокальных граничных условиях специального вида, которым удовлетворяет решение. В весьма общих предположениях относительно переменного коэффициента определена кратность собственных чисел, построена область локализации спектра оператора.

    Mokin A.Y.
    On spectral properties of a nonselfadjoint difference operator
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 143-150

    The eigenvalue problem for a nonselfadjoint difference operator with nonconstant coefficient is considered. The main peculiarity of the problem is that its solution satisfies a two-point nonlocal boundary condition. Multiplicity of eigenvalues is discussed and a region where all eigenvalues reside is defined taking into account a very generic assumption about the nonconstant coefficient.

    Views (last year): 1. Citations: 2 (RSCI).
  6. Антонов И.В., Бруттан Ю.В.
    Синтез структуры организованных систем как центральная проблема эволюционной кибернетики
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1103-1124

    В статье рассматриваются подходы к эволюционному моделированию синтеза организованных систем и анализируются методологические проблемы эволюционных вычислений этого направления. На основе анализа работ по эволюционной кибернетике, теории эволюции, теории систем и синергетике сделан вывод о наличии открытых проблем в задачах формализации синтеза организованных систем и моделирования их эволюции. Показано, что теоретической основой для практики эволюционного моделирования являются положения синтетической теории эволюции. Рассмотрено использование виртуальной вычислительной среды для машинного синтеза алгоритмов решения задач. На основе полученных в процессе моделирования результатов сделан вывод о наличии ряда условий, принципиально ограничивающих применимость методов генетического программирования в задачах синтеза функциональных структур. К основным ограничениям относятся необходимость для фитнес-функции отслеживать поэтапное приближение к решению задачи и неприменимость данного подхода к задачам синтеза иерархически организованных систем. Отмечено, что результаты, полученные в практике эволюционного моделирования в целом за все время его существования, подтверждают вывод о принципиальной ограниченности возможностей генетического программирования при решении задач синтеза структуры организованных систем. В качестве источников принципиальных трудностей для машинного синтеза системных структур указаны отсутствие направлений для градиентного спуска при структурном синтезе и отсутствие закономерности случайного появления новых организованных структур. Сделан вывод об актуальности рассматриваемых проблем для теории биологической эволюции. Обосновано положение о биологической специфике практически возможных путей синтеза структуры организованных систем. В качестве теоретической интерпретации обсуждаемой проблемы предложено рассматривать системно-эволюционную концепцию П.К. Анохина. Процесс синтеза функциональных структур рассматривается в этом контексте как адаптивная реакция организмов на внешние условия, основанная на их способности к интегративному синтезу памяти, потребностей и информации о текущих условиях. Приведены результаты актуальных исследований, свидетельствующие в пользу данной интерпретации. Отмечено, что физические основы биологической интегративности могут быть связаны с явлениями нелокальности и несепарабельности, характерными для квантовых систем. Отмечена связь рассматриваемой в данной работе проблематики с проблемой создания сильного искусственного интеллекта.

    Antonov I.V., Bruttan I.V.
    Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124

    The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.

  7. Мокин А.Ю.
    Корректность семейства задач с неклассическим краевым условием
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 139-146

    Методом разделения переменных решена одномерная задача параболического типа с нелокальными краевыми условиями, содержащими вещественный параметр. Рассмотренные краевые условия не являются усиленно регулярными ни при каком значении параметра. Система собственных функций оператора второй производной, подчиненного краевым условиям исходной задачи, не обладает свойством базисности. Априорные оценки решения, полученные в работе, означают устойчивость решения по начальным данным.

    Mokin A.Y.
    Correctness of task family with nonclassical boundary conditions
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 139-146

    A boundary value problem for partial differential equation with nonlocal boundary relations of special type is resolved by means of a slight modification of the separation of variables method. Ordinal differential operator of the second order subject to boundary conditions of the main problem is not self-adjoint. The system of eigenfunctions generated by the operator has no basis property in L2[0,1] space. A special system of functions is proposed to expand the solution of the boundary value problem.

    Views (last year): 2.
  8. Резаев Р.О., Трифонов А.Ю., Шаповалов А.В.
    Система Эйнштейна−Эренфеста типа (0, M) и асимптотические решения многомерного нелинейного уравнения Фоккера−Планка−Колмогорова
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 151-160

    Рассмотрен формализм квазиклассического приближения относительно малого коэффициента диффузии D, D→0, для многомерного уравнения Фоккера−Планка−Колмогорова с нелокальным и нелинейным вектором сноса в классе траекторно-сосредоточенных функций. Получена динамическая система Эйнштейна−Эренфеста типа (0, M), описывающая движение точки, в окрестности которой локализованы квазиклассические асимптотические решения. Построено семейство квазиклассических асимптотик с точностью O(D(M+1)/2).

    Rezaev R.O., Trifonov A.Y., Shapovalov A.V.
    The Einstein−Ehrenfest system of (0, M)-type and asymptotical solutions of the multidimensional nonlinear Fokker−Planck−Kolmogorov equation
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 151-160

    Semiclassical approximation formalism is developed for the multidimensional Fokker–Planck–Kolmogorov equation with non-local and nonlinear drift vector with respect to a small diffusion coefficient D, D→0, in the class of trajectory concentrated functions. The Einstein−Ehrenfest system of (0, M)-type is obtained. A family of semiclassical solutions localized around a point driven by the Einstein−Ehrenfest system accurate to O(D(M+1)/2) is found.

    Views (last year): 2.
  9. Аристова Е.Н., Караваева Н.И.
    Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448

    Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.

    Aristova E.N., Karavaeva N.I.
    Bicompact schemes for the HOLO algorithm for joint solution of the transport equation and the energy equation
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1429-1448

    The numerical solving of the system of high-temperature radiative gas dynamics (HTRGD) equations is a computationally laborious task, since the interaction of radiation with matter is nonlinear and non-local. The radiation absorption coefficients depend on temperature, and the temperature field is determined by both gas-dynamic processes and radiation transport. The method of splitting into physical processes is usually used to solve the HTRGD system, one of the blocks consists of a joint solving of the radiative transport equation and the energy balance equation of matter under known pressure and temperature fields. Usually difference schemes with orders of convergence no higher than the second are used to solve this block. Due to computer memory limitations it is necessary to use not too detailed grids to solve complex technical problems. This increases the requirements for the order of approximation of difference schemes. In this work, bicompact schemes of a high order of approximation for the algorithm for the joint solution of the radiative transport equation and the energy balance equation are implemented for the first time. The proposed method can be applied to solve a wide range of practical problems, as it has high accuracy and it is suitable for solving problems with coefficient discontinuities. The non-linearity of the problem and the use of an implicit scheme lead to an iterative process that may slowly converge. In this paper, we use a multiplicative HOLO algorithm named the quasi-diffusion method by V.Ya.Goldin. The key idea of HOLO algorithms is the joint solving of high order (HO) and low order (LO) equations. The high-order equation (HO) is the radiative transport equation solved in the energy multigroup approximation, the system of quasi-diffusion equations in the multigroup approximation (LO1) is obtained by averaging HO equations over the angular variable. The next step is averaging over energy, resulting in an effective one-group system of quasi-diffusion equations (LO2), which is solved jointly with the energy equation. The solutions obtained at each stage of the HOLO algorithm are closely related that ultimately leads to an acceleration of the convergence of the iterative process. Difference schemes constructed by the method of lines within one cell are proposed for each of the stages of the HOLO algorithm. The schemes have the fourth order of approximation in space and the third order of approximation in time. Schemes for the transport equation were developed by B.V. Rogov and his colleagues, the schemes for the LO1 and LO2 equations were developed by the authors. An analytical test is constructed to demonstrate the declared orders of convergence. Various options for setting boundary conditions are considered and their influence on the order of convergence in time and space is studied.

  10. Борисов А.В., Трифонов А.Ю., Шаповалов А.В.
    Численное моделирование популяционной 2D-динамики с нелокальным взаимодействием
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 33-40

    Получены численные решения двумерного реакционно-диффузионного уравнения с нелокальной нелинейностью, описывающие формирование диссипативной структуры. Рассмотрены структуры, возникающие из начальных распределений с одним и несколькими центрами локализации. При изменении параметров уравнения решения описывают формирование расширяющихся кольцевых структур. Рассмотрены особенности образования и взаимодействия расширяющихся кольцеобразных структур в зависимости от характера нелокального взаимодействия.

    Borisov A.V., Trifonov A.Y., Shapovalov A.V.
    Numerical modeling of population 2D-dynamics with nonlocal interaction
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 33-40

    Numerical solutions for the two-dimensional reaction-diffusion equation with nonlocal nonlinearity are obtained. The solutions reveal formation of dissipative structures. Structures arising from initial distributions with one and several centers of localization are considered. Formation of extending circular structures is shown. Peculiarities of formation and interaction of extending circular structures depending on  nonlocal interaction are considered.

    Views (last year): 3. Citations: 5 (RSCI).
Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"