All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Численно-аналитическое интегрирование уравнений свободного движения тяжелой точки вблизи звукового пика показателя степенного сопротивления
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 785-798Показано, что для различных баллистических профилей во всем скоростном пространстве сила сопротивления изменяется со скоростью V по закону R(V)=Mg·w(V/WT)n(V), где WT — близкая к звуковой пороговая скорость, w=R(WT), n(V) — значение показателя в кусочно-степенной формуле. Методом, базирующимся на преобразованиях Лежандра, найдена отражающая пик n(V) поправка к невозмущенной резольвентной функции f(b)=abb'', a(b) — подкасательная к траектории, b=tgθ — ее наклон.
Ключевые слова: баллистический профиль, сопротивление, скорость, показатель степени, звуковой пик, преобразование Лежандра, резольвентная функция, поправка теории возмущений.
Numerical-analytical integrating the equations of a point mass projectile motion at the velocities close to sonic peak of air drag exponent
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 785-798It is shown that the relative air drag force for many different ballistic profiles obeys the law as follows R(V)=Mg·w(V/WT)n(V) with V being the velocity, WT — some threshold velocity close to that of sound, w equals to R(WT) and n(V) is the exponent in broken power Gȃvre formula. Using the Legendre transformation and in frames of perturbation approach received was the expression for addition δabb''(b) to resolvent function abb''(b), where a(b) is an intercept and b=tgθ, θ — inclination angle.
-
Об одном резольвентном методе интегрирования уравнений свободного движения в среде с квадратичным сопротивлением
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 265-277Предложен новый набор ключевых баллистических параметров: b0 = tgθ0, θ0 — угол вылета, Ra — вершинный радиус кривизны траектории и β0 — безразмерный квадрат разворотной скорости, и на его основе разработан новый прием приближенного интегрирования уравнений динамики материальной точки в среде с квадратичным сопротивлением (α = R/mg = 0,5…1,5) при tgθ0 < 0,5. Способ базируется на преобразованиях Лежандра, и он дает формулы с автоматически подстраиваемой точностью как для текущих координат x(b), y(b) и времени t(b), b = tgθ — текущий наклон траектории, так и для основных параметров (время T, дальность L, положение вершины La) траектории в диапазоне, далеко выходящем за малоугловую область прицельной стрельбы. Точность формул выверялась при помощи продукта Maple.
Ключевые слова: квадратичный закон сопротивления, преобразования Лежандра, баллистический, малоугловая область, автоподстройка точности, Maple.
On one resolvent method for integrating the low angle trajectories of a heavy point projectile motion under quadratic air resistance
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 265-277Views (last year): 1. Citations: 6 (RSCI).New key parameters, namely b0 = tgθ0, θ0 — angle of throwing, Ra — top curvature radius and β0 — dimensionless speed square on the top of low angular trajectory were suggested in classic problem of integrating nonlinear equations of point mass projectile motion with quadratic air drag. Very precise formulae were obtained in a new way for coordinates x(b), y(b) and fly time t(b), b = tgθ where θ is inclination angle. This method is based on Legendre transformation and its precision is automatically improved in wide range of the θ0 values and drag force parameters α. The precision was monitored by Maple computing product.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"