All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Численно-аналитическое интегрирование уравнений свободного движения тяжелой точки вблизи звукового пика показателя степенного сопротивления
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 785-798Показано, что для различных баллистических профилей во всем скоростном пространстве сила сопротивления изменяется со скоростью V по закону R(V)=Mg·w(V/WT)n(V), где WT — близкая к звуковой пороговая скорость, w=R(WT), n(V) — значение показателя в кусочно-степенной формуле. Методом, базирующимся на преобразованиях Лежандра, найдена отражающая пик n(V) поправка к невозмущенной резольвентной функции f(b)=abb'', a(b) — подкасательная к траектории, b=tgθ — ее наклон.
Ключевые слова: баллистический профиль, сопротивление, скорость, показатель степени, звуковой пик, преобразование Лежандра, резольвентная функция, поправка теории возмущений.
Numerical-analytical integrating the equations of a point mass projectile motion at the velocities close to sonic peak of air drag exponent
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 785-798It is shown that the relative air drag force for many different ballistic profiles obeys the law as follows R(V)=Mg·w(V/WT)n(V) with V being the velocity, WT — some threshold velocity close to that of sound, w equals to R(WT) and n(V) is the exponent in broken power Gȃvre formula. Using the Legendre transformation and in frames of perturbation approach received was the expression for addition δabb''(b) to resolvent function abb''(b), where a(b) is an intercept and b=tgθ, θ — inclination angle.
-
Моделирование полета осколков метеорного тела с учетом вращения
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 593-612Алгоритм решения сопряженной аэродинамической и баллистической задач, разработанный на основе метода моделирования с помощью системы сеток, дополнен расчетным механизмом, позволяющим учитывать перемещение и вращение тел относительно центров масс. Для заданной конфигурации тел решается задача обтекания методом установления, после этого состояние системы перерассчитывается через малый промежуток времени. Итерационным способом оказывается возможным проследить динамику системы на больших интервалах времени. Алгоритм реализован для исследования полета системы тел с учетом их относительного положения и вращения. Выполнено тестирование алгоритма на задаче обтекания тела сегментально-конической формы. Показано хорошее согласование результатов с экспериментальными исследованиями. Алгоритм применен для расчета задачи о сверхзвуковом полете вращающегося тела. Для тел прямоугольной формы, имитирующих удлиненные осколки метеорного тела, показано, что для удлиненных тел аэродинамически более устойчивым положением является полет с большей по площади стороной поперек направления полета. Это приводит фактически к полету тел с максимально возможным аэродинамическим сопротивлением из-за максимальной площади миделя. Алгоритм применен для расчета задачи о разлете двух одинаковых тел прямоугольной формы с учетом их вращения. Вращение приводит к тому, что тела разлетаются не только под действием расталкивающей аэродинамической силы, но и дополнительной боковой силы из-за приобретения угла атаки. Скорость разлета двух осколков метеорного тела удлиненной формы при учете вращения увеличивается до трех раз по сравнению с вариантом, когда предполагается, что тела не вращаются. Исследование проведено в целях оценки влияния различных факторов на скорость разлета осколков метеорного тела после разрушения для построения возможных траекторий выпавших на землю метеоритов. Разработанный алгоритм решения сопряженной аэродинамической и баллистической задач с учетом относительного перемещения и вращения тел может быть использован для решения технических задач, например для исследования динамики разделения ступеней летательного аппарата.
Ключевые слова: моделирование, метеорное тело, аэродинамические характеристики, динамика полета, фрагментация, интерференция, траектория, вращение.
Modeling the flight of meteoroid fragments with accounting for rotation
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 593-612Views (last year): 6.An algorithm for solving the conjugation of aerodynamic and ballistic problems, which is based on the method of modeling with the help of a grid system, has been complemented by a numerical mechanism that allows to take into account the relative movement and rotation of bodies relative to their centers of mass. For a given configuration of the bodies a problem of flow is solved by relaxation method. After that the state of the system is recalculated after a short amount of time. With the use of iteration it is possible to trace the dynamics of the system over a large period of time. The algorithm is implemented for research of flight of systems of bodies taking into account their relative position and rotation. The algorithm was tested on the problem of flow around a body with segmental-conical form. A good correlation of the results with experimental studies was shown. The algorithm is used to calculate the problem of the supersonic fight of a rotating body. For bodies of rectangular shape, imitating elongated fragments of a meteoroid, it is shown that for elongated bodies the aerodynamically more stable position is flight with a larger area across the direction of flight. This de facto leads to flight of bodies with the greatest possible aerodynamic resistance due to the maximum midship area. The algorithm is used to calculate the flight apart of two identical bodies of a rectangular shape, taking into account their rotation. Rotation leads to the fact that the bodies fly apart not only under the action of the pushing aerodynamic force but also the additional lateral force due to the acquisition of the angle of attack. The velocity of flight apart of two fragments with elongated shape of a meteoric body increases to three times with the account of rotation in comparison with the case, when it is assumed that the bodies do not rotate. The study was carried out in order to evaluate the influence of various factors on the velocity of fragmentation of the meteoric body after destruction in order to construct possible trajectories of fallen on earth meteorites. A developed algorithm for solving the conjugation of aerodynamic and ballistic problems, taking into account the relative movement and rotation of the bodies, can be used to solve technical problems, for example, to study the dynamics of separation of aircraft stages.
-
Об одном резольвентном методе интегрирования уравнений свободного движения в среде с квадратичным сопротивлением
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 265-277Предложен новый набор ключевых баллистических параметров: b0 = tgθ0, θ0 — угол вылета, Ra — вершинный радиус кривизны траектории и β0 — безразмерный квадрат разворотной скорости, и на его основе разработан новый прием приближенного интегрирования уравнений динамики материальной точки в среде с квадратичным сопротивлением (α = R/mg = 0,5…1,5) при tgθ0 < 0,5. Способ базируется на преобразованиях Лежандра, и он дает формулы с автоматически подстраиваемой точностью как для текущих координат x(b), y(b) и времени t(b), b = tgθ — текущий наклон траектории, так и для основных параметров (время T, дальность L, положение вершины La) траектории в диапазоне, далеко выходящем за малоугловую область прицельной стрельбы. Точность формул выверялась при помощи продукта Maple.
Ключевые слова: квадратичный закон сопротивления, преобразования Лежандра, баллистический, малоугловая область, автоподстройка точности, Maple.
On one resolvent method for integrating the low angle trajectories of a heavy point projectile motion under quadratic air resistance
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 265-277Views (last year): 1. Citations: 6 (RSCI).New key parameters, namely b0 = tgθ0, θ0 — angle of throwing, Ra — top curvature radius and β0 — dimensionless speed square on the top of low angular trajectory were suggested in classic problem of integrating nonlinear equations of point mass projectile motion with quadratic air drag. Very precise formulae were obtained in a new way for coordinates x(b), y(b) and fly time t(b), b = tgθ where θ is inclination angle. This method is based on Legendre transformation and its precision is automatically improved in wide range of the θ0 values and drag force parameters α. The precision was monitored by Maple computing product.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"