All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Создание распределенных вычислительных приложений и сервисов на базе облачной платформы Everest
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 593-599Использование сервис-ориентированного подхода способно повысить производительность научных исследований за счет возможности публикации и совместного использования вычислительных приложений, а также автоматизации вычислительных процессов. Everest — облачная платформа, позволяющая исследователям с минимальной квалификацией публиковать и использовать научные приложения в виде сервисов. В отличие от существующих решений, Everest выполняет приложения на подключенных пользователями вычислительных ресурсах, реализует гибкое связывание ресурсов с приложениями и поддерживает программный доступ к функциональности платформы. В статье рассматриваются текущая реализация платформы, новые разработки и направления дальнейших исследований.
Ключевые слова: распределенные вычисления, облачная платформа, веб-сервисы, REST, интеграция вычислительных ресурсов, композиция приложений.
Development of distributed computing applications and services with Everest cloud platform
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 593-599Views (last year): 6. Citations: 2 (RSCI).The use of service-oriented approach in scientific domains can increase research productivity by enabling sharing, publication and reuse of computing applications, as well as automation of scientific workflows. Everest is a cloud platform that enables researchers with minimal skills to publish and use scientific applications as services. In contrast to existing solutions, Everest executes applications on external resources attached by users, implements flexible binding of resources to applications and supports programmatic access to the platform's functionality. The paper presents current state of the platform, recent developments and remaining challenges.
-
Российские участники добровольных распределенных вычислений на платформе BOINC. Статистика участия
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 727-734В статье рассмотрено сообщество российских участников добровольных распределенных вычислений (ДРВ), реализуемых на открытой программной платформе BOINC. Для проведения статистического анализа активности российских участников ДРВ использованы данные, полученные при работе с API BOINC, приложением BOINC, и сайтом boincstats.com. Скрипт для получения данных и создания соответствующей базы данных с этого сайта был написан на PHP, для хранения данных, использовались базы данных MySQL.
В базе данных были аккумулированы показатели по всем российским проектам, включая архивные, что позволило рассчитать показатели, характеризующие поведение российских участников во всех проектах и командах BOINC — абсолютное и относительное количество российских участников, активность участия, количество привнесенных очков в систему, количество участников в каждом из российских проектов, заинтересованность участников в концепции ДРВ.
Показано, что позиции России в рейтинге стран очень низки и сохраняются практически на одном уровне в течение 4 лет. По мнению авторов исследования, низкие показатели поведения российских участников ДРВ, обусловлены индивидуализмом и закрытостью российских Интернет-пользователей, а также малым интересом к развитию фундаментального научного знания, научному поиску, что, возможно, связано с низким авторитетом как науки в целом, так и гражданской науки, краудсорсинга, в частности, и, соответственно, недостаточном распространении идей использования механизма добровольных распределённых вычислений для реализации исследовательских проектов.
Russian participants in BOINC-based volunteer computing projects. The activity statistics
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 727-734Views (last year): 4. Citations: 4 (RSCI).The article analyses the activity statistics of the Russian participants of volunteer computing (VC) using platform BOINC obtained by the authors. The data has been received with API BOINC and site www.boincstats.com. The script for the database was written in PHP, for data storing was used MySQL.
The database indicators were accumulated across all Russian projects, which allowed the calculation of the indicators characterizing the behavior of the Russian participants in all projects and teams BOINC — absolute and relative number of Russian participants, their activity, the number of introduced points system, the number of participants in each of the Russian project participants, interest in the concept of the VC.
It is shown that the position of Russia in the countries ranking is very low and is retained at the same level for 4 years. According to the authors, low activity of the Russian participants of the VC, due to individualism and the closure of Russian Internet users, as well as to a small interest in the development of fundamental science, scientific research. This, possibly due to the low-prestige as a science as a whole, as well as civil science, crowdsourcing, in particular. And, therefore, we can see insufficient dissemination of the ideas of using the mechanism of VC for research projects.
-
Особенности управления данными в DIRAC
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 741-744Целью данной работы является ознакомление с технологиями хранения больших данных и перспективами развития технологий хранения для распределенных вычислений. Приведен анализ популярных технологий хранения и освещаются возможные ограничения использования.
Основными проблемами развития технологий хранения данных являются хранение сверхбольших объемов данных, отсутствие качества в обработке таких данных, масштабируемость, отсутствие быстрого доступа к данным и отсутствие реализации интеллектуального поиска данных.
В работе рассматриваются особенности организации системы управления данными (DMS) программного продукта DIRAC. Приводится описание устройства, функциональности и способов работы с сервисом передачи данных (Data transfer service) для экспериментов физики высоких энергий, которые требуют вычисления задач с широким спектром требований с точки зрения загрузки процессора, доступа к данным или памяти и непостоянной загрузкой использования ресурсов.
Ключевые слова: распределенное хранение данных, Big Data, программное обеспечение, DIRAC, сервис передачи данных, система управления данными.Views (last year): 2.The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.
The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.
Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.
-
Естественные модели параллельных вычислений
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.
Ключевые слова: естественные вычисления, эволюционные алгоритмы, искусственные биологические системы.
Natural models of parallel computations
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 781-785Views (last year): 17. Citations: 2 (RSCI).Course “Natural models of parallel computing”, given for senior students of the Faculty of Computational Mathematics and Cybernetics, Moscow State University, is devoted to the issues of supercomputer implementation of natural computational models and is, in fact, an introduction to the theory of natural computing, a relatively new branch of science, formed at the intersection of mathematics, computer science and natural sciences (especially biology). Topics of the natural computing include both already classic subjects such as cellular automata, and relatively new, introduced in the last 10–20 years, such as swarm intelligence. Despite its biological origin, all these models are widely applied in the fields related to computer data processing. Research in the field of natural computing is closely related to issues and technology of parallel computing. Presentation of theoretical material of the course is accompanied by a consideration of the possible schemes for parallel computing, in the practical part of the course it is supposed to perform by the students a software implementation using MPI technology and numerical experiments to investigate the effectiveness of the chosen schemes of parallel computing.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"