All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Integration the relativistic wave equations in Bianchi IX cosmology model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.
Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.
The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.
Keywords: noncommutative integration, Bianchi IX.Views (last year): 5. -
Cosmological models of the Universe without a Beginning and without a singularity
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.
These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.
In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.
In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.
The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.
In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.
We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.
In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.
But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.
It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.
The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.
-
Views (last year): 3.
The BES-III experiment at the IHEP CAS, Beijing, is running at the high-luminosity e+e- collider BEPC-II to study physics of charm quarks and tau leptons. The world largest samples of J/psi and psi' events are already collected, a number of unique data samples in the energy range 2.5–4.6 GeV have been taken. The data volume is expected to increase by an order of magnitude in the coming years. This requires to move from a centralized computing system to a distributed computing environment, thus allowing the use of computing resources from remote sites — members of the BES-III Collaboration. In this report the general information, latest results and development plans of the BES-III distributed computing system are presented.
-
Views (last year): 2.
The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.
The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.
Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"