All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Эффективная обработка и классификация энергетических спектров морского волнения на основе распределенного вычислительного конвейера
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 517-520Обработка больших массивов данных обычно происходит в несколько последовательно выполняемых этапов, таких как пред- и постобработка, после каждого из которых промежуточные данные записываются на диск; однако, для каждой задачи этап предварительной обработки может отличаться, и в таком случае непосредственная передача данных по вычислительному конвейеру от одного этапа (звена) к другому бу- дет более эффективным с точки зрения производительности решением. В более общем случае некоторые этапы можно разделить на параллельные части, сформировав таким образом распределенный вычислительный конвейер, каждое звено которого может иметь несколько входов и выходов. Такой принцип обработки данных применяется в задаче о классификации энергетических спектров морского волнения, которая основана на аппроксимациях, позволяющих извлекать параметры отдельных систем волн (тип волн, генеральное направление волн и т. п.). Система, построенная на этом принципе показывает более высокую производительность по сравнению с часто применяемой поэтапной обработкой данных.
Efficient processing and classification of wave energy spectrum data with a distributed pipeline
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 517-520Views (last year): 3. Citations: 2 (RSCI).Processing of large amounts of data often consists of several steps, e.g. pre- and post-processing stages, which are executed sequentially with data written to disk after each step, however, when pre-processing stage for each task is different the more efficient way of processing data is to construct a pipeline which streams data from one stage to another. In a more general case some processing stages can be factored into several parallel subordinate stages thus forming a distributed pipeline where each stage can have multiple inputs and multiple outputs. Such processing pattern emerges in a problem of classification of wave energy spectra based on analytic approximations which can extract different wave systems and their parameters (e.g. wave system type, mean wave direction) from spectrum. Distributed pipeline approach achieves good performance compared to conventional “sequential-stage” processing.
-
Ресурсный центр обработки данных уровня Tier-1 в национальном исследовательском центре «Курчатовский институт» для экспериментов ALICE, ATLAS и LHCb на Большом адронном коллайдере (БАК)
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 621-630Представлен обзор распределенной вычислительной инфраструктуры ресурсных центров коллаборации WLCG для экспериментов БАК. Особое внимание уделено описанию решаемых задач и основным сервисам нового ресурсного центра уровня Tier-1, созданного в Национальном исследовательском центре «Курчатовский институт» для обслуживания ALICE, ATLAS и LHCb экспериментов (г. Москва).
Ключевые слова: высокопроизводительные вычислительные системы, системы распределенного массового хранения данных, системы распределенной обработки данных, грид.
The Tier-1 resource center at the National Research Centre “Kurchatov Institute” for the experiments, ALICE, ATLAS and LHCb at the Large Hadron Collider (LHC)
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 621-630Views (last year): 2.The review of the distributed computing infrastructure of the Tier-1 sites for the Alice, ATLAS, LHCb experiments at the LHC is given. The special emphasis is placed on the main tasks and services of the Tier-1 site, which operates in the Kurchatov Institute in Moscow.
-
Использование облачных технологий CERN для дальнейшего развития по TDAQ ATLAS и его применения при обработке данных ДЗЗ в приложениях космического мониторинга
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 683-689Облачные технологий CERN (проект CernVM) дают новые возможности разработчикам программного обеспечения. Участие группы TDAQ ATLAS ОИЯИ в разработке ПО распределенной системы сбора и обработке данных эксперимента ATLAS (CERN) связано с необходимостью работы в условиях динамично развивающейся системы и ее инфраструктуры. Использование облачных технологий, в частности виртуальных машин CernVM, предоставляет наиболее эффективные способы доступа как к собственно ПО TDAQ, так и к ПО, используемому в CERN: среда — Scientific Linux и software repository c CernVM-FS. Исследуется вопрос о возможности функционирования ПО промежуточного уровня (middleware) в среде CernVM. Использование CernVM будет проиллюстрировано на трех задачах: разработка пакетов Event Dump и Webemon, а также на адаптации системы автоматической проверки качества данных TDAQ ATLAS — Data Quality Monitoring Framework для задач оценки качества радиолокационных данных.
Ключевые слова: облачные технологий, виртуальные машины, обработка данных в области дистанционного зондирования Земли, ATLAS TDAQ, ПО промежуточного уровня.
Using CERN cloud technologies for the further ATLAS TDAQ software development and for its application for the remote sensing data processing in the space monitoring tasks
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 683-689Views (last year): 2.The CERN cloud technologies (the CernVM project) give a new possibility for the software developers. The participation of the JINR ATLAS TDAQ working group in the software development for distributed data acquisition and processing system (TDAQ) of the ATLAS experiment (CERN) involves the work in the condition of the dynamically developing system and its infrastructure. The CERN cloud technologies, especially CernVM, provide the most effective access as to the TDAQ software as to the third-part software used in ATLAS. The access to the Scientific Linux environment is provided by CernVM virtual machines and the access software repository — by CernVM-FS. The problem of the functioning of the TDAQ middleware in the CernVM environment was studied in this work. The CernVM usage is illustrated on three examples: the development of the packages Event Dump and Webemon, and the adaptation of the data quality auto checking system of the ATLAS TDAQ (Data Quality Monitoring Framework) for the radar data assessment.
-
Особенности управления данными в DIRAC
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 741-744Целью данной работы является ознакомление с технологиями хранения больших данных и перспективами развития технологий хранения для распределенных вычислений. Приведен анализ популярных технологий хранения и освещаются возможные ограничения использования.
Основными проблемами развития технологий хранения данных являются хранение сверхбольших объемов данных, отсутствие качества в обработке таких данных, масштабируемость, отсутствие быстрого доступа к данным и отсутствие реализации интеллектуального поиска данных.
В работе рассматриваются особенности организации системы управления данными (DMS) программного продукта DIRAC. Приводится описание устройства, функциональности и способов работы с сервисом передачи данных (Data transfer service) для экспериментов физики высоких энергий, которые требуют вычисления задач с широким спектром требований с точки зрения загрузки процессора, доступа к данным или памяти и непостоянной загрузкой использования ресурсов.
Ключевые слова: распределенное хранение данных, Big Data, программное обеспечение, DIRAC, сервис передачи данных, система управления данными.Views (last year): 2.The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.
The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.
Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"