All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Вариационный принцип для сплошных сред, обладающих памятью формы, при изменяющихся внешних силах и температуре
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 541-555В рамках феноменологической механики сплошной среды без анализа микрофизики явления рассматривается квазистатическая задача деформирования сплавов с памятью формы. Феноменологический подход основан на сопоставлении двух диаграмм деформирования материалов. Первая диаграмма отвечает активному пропорциональному нагружению, когда сплав ведет себя как идеальный упругопластический материал; после снятия нагрузки фиксируется остаточная деформация. Вторая диаграмма наблюдается, если деформированный образец нагреть до определенной для каждого сплава температуры. Происходит восстановление первоначальной формы: обратная деформация совпадает с точностью до знака с деформациями первой диаграммы. Поскольку первый этап деформирования может быть описан с по- мощью вариационного принципа, для которого доказывается существование обобщенных решений при произвольном нагружении, становится ясным, как объяснить обратную деформацию в рамках слегка видоизмененной теории пластичности. Нужно односвязную поверхность нагружения заменить двусвязной и, кроме того, вариационный принцип дополнить двумя законами термодинамики и принципом ортогональности термодинамических сил и потоков. Доказательство существования решений и в этом случае не встречает затруднений. Успешное применение теории пластичности при постоянной температуре порождает потребность получить аналогичный результат в более общем случае изменяющихся внешних сил и температуры. В работе изучается идеальная упругопластическая модель Мизеса при линейных скоростях деформаций. Учет упрочнения и использование произвольной поверхности нагружения не вызывают дополнительных трудностей.
Формулируется расширенный вариационный принцип типа Рейсснера, который вместе с законами термопластичности позволяет доказать существование обобщенных решений для трехмерных тел, изготовленных из материалов, обладающих памятью формы. Основная трудность, которую приходится преодолевать, состоит в выборе функционального пространства для скоростей и деформаций точек континуума. Для этой цели в статье используется пространство ограниченных деформаций — основной инструмент математической теории пластичности. Процесс доказательства показывает, что принятый в работе выбор функциональных пространств не является единственным. Изучение других возможных расширенных постановок вариационной задачи, наряду с выяснением регулярности обобщенных решений, представляется интересной задачей для будущих исследований.
Ключевые слова: сплошная среда, вариационный принцип, материалы с памятью формы, термопластичность, пространство ограниченной деформации, обобщенные решения.
Variational principle for shape memory solids under variable external forces and temperatures
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 541-555The quasistatic deformation problem for shape memory alloys is reviewed within the phenomenological mechanics of solids without microphysics analysis. The phenomenological approach is based on comparison of two material deformation diagrams. The first diagram corresponds to the active proportional loading when the alloy behaves as an ideal elastoplastic material; the residual strain is observed after unloading. The second diagram is relevant to the case when the deformed sample is heated to a certain temperature for each alloy. The initial shape is restored: the reverse distortion matches deformations on the first diagram, except for the sign. Because the first step of distortion can be described with the variational principle, for which the existence of the generalized solutions is proved under arbitrary loading, it becomes clear how to explain the reverse distortion within the slightly modified theory of plasticity. The simply connected surface of loading needs to be replaced with the doubly connected one, and the variational principle needs to be updated with two laws of thermodynamics and the principle of orthogonality for thermodynamic forces and streams. In this case it is not difficult to prove the existence of solutions either. The successful application of the theory of plasticity under the constant temperature causes the need to obtain a similar result for a more general case of variable external forces and temperatures. The paper studies the ideal elastoplastic von Mises model at linear strain rates. Taking into account hardening and arbitrary loading surface does not cause any additional difficulties.
The extended variational principle of the Reissner type is defined. Together with the laws of thermal plasticity it enables to prove the existence of the generalized solutions for three-dimensional bodies made of shape memory materials. The main issue to resolve is a challenge to choose a functional space for the rates and deformations of the continuum points. The space of bounded deformation, which is the main instrument of the mathematical theory of plasticity, serves this purpose in the paper. The proving process shows that the choice of the functional spaces used in the paper is not the only one. The study of other possible problem settings for the extended variational principle and search for regularity of generalized solutions seem an interesting challenge for future research.
-
Перколяционное моделирование гидравлического гистерезиса в пористой среде
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 543-558В работе рассматриваются различные модели гидравлического гистерезиса, возникающего при инвазивной ртутной порометрии. Для моделирования гидравлического гистерезиса используется изотропная перколяция узлов на трехмерных квадратных решетках с $(1,\,\pi)$-окрестностью. Феноменологически исследуется взаимосвязь данных инвазивной порометрии с параметрами перколяционной модели. Реализация перколяционной модели основана на библиотеках SPSL и SECP, выпущенных под лицензией GNU GPL-3 с использованием свободного языка программирования R.
Ключевые слова: инвазивная ртутная порометрия, гидравлический гистерезис, перколяция узлов, квадратная решетка, неметрическое расстояние Минковского, окрестность Мура, массовая фрактальная размерность, язык программирования R, библиотека SPSL, библиотека SECP.
Percolation modeling of hydraulic hysteresis in a porous media
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 543-558Views (last year): 3. Citations: 1 (RSCI).In this paper we consider various models of hydraulic hysteresis in invasive mercury porosimetry. For simulating the hydraulic hysteresis is used isotropic site percolation on three-dimensional square lattices with $(1,\,\pi)$-neighborhood. The relationship between the percolation model parameters and invasive porosimetry data is studied phenomenologically. The implementation of the percolation model is based on libraries SPSL and SECP, released under license GNU GPL-3 using the free programming language R.
-
О решении уравнения Экснера для дна, имеющего сложную морфологию
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 449-461Для математического моделирования несвязного речного дна широко используется уравнение Экснера совместно с феноменологическими моделями транспорта наносов. В случае моделирования эволюции дна простой геометрической формы такой подход позволяет получить точное решение без каких-либо затруднений. Однако в случае моделирования неустойчивого дна сложной геометрической формы в ряде случаев возникает численная неустойчивость, которую сложно отделить от естественной физической неустойчивости.
В настоящей работе выполнен анализпр ичин возникновения численной неустойчивости при моделировании эволюции дна сложной геометрической формы с помощью уравнения Экснера и феноменологических моделей расхода наносов. Показано, что при численном решении уравнения Экснера, замкнутого феноменологической моделью транспорта наносов, могут реализовываться два вида неопределенности. Первая неопределенность возникает при условии транзита наносов над областью дна, где деформаций не происходит. Вторая неопределенность возникает в точках экстремума донного профиля, когда расход наносов меняется, а дно остается неизменным. Авторами выполнено замыкание уравнения Экснера с помощью аналитической модели транспорта наносов, которое позволило преобразовать уравнение Экснера к уравнению параболического типа. Анализполу ченного уравнения показал, что его численное решение не приводит к возникновению вышеуказанных неопределенностей. Параболический вид преобразованного уравнения Экснера позволяет применить для его решения эффективную и устойчивую неявную центрально-разностную схему.
Выполнено решение модельной задачи об эволюции дна при периодическом распределении придонного касательного напряжения. Для численного решения задачи использовалась явная центрально-разностная схема с применением и без применения метода фильтрации и неявная центрально-разностная схема. Показано, что явная центрально-разностная схема теряет устойчивость в области экстремума донного профиля. Использование метода фильтрации привело к повышенной диссипативности решения. Решение с помощью неявной центрально-разностной схемы соответствует закону распределения придонного касательного напряжения и является устойчивым во всей расчетной области.
Ключевые слова: математическое моделирование, численная неустойчивость, уравнение Экснера, речное дно, транспорт наносов, аналитическая модель.
Solving of the Exner equation for morphologically complex bed
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 449-461Views (last year): 10.The Exner equation in conjunction phenomenological sediment transport models is widely used for mathematical modeling non-cohesive river bed. This approach allows to obtain an accurate solution without any difficulty if one models evolution of simple shape bed. However if one models evolution of complex shape bed with unstable soil the numerical instability occurs in some cases. It is difficult to detach this numerical instability from the natural physical instability of bed.
This paper analyses the causes of numerical instability occurring while modeling evolution of complex shape bed by using the Exner equation and phenomenological sediment rate models. The paper shows that two kinds of indeterminateness may occur while solving numerically the Exner equation closed by phenomenological model of sediment transport. The first indeterminateness occurs in the bed area where sediment transport is transit and bed is not changed. The second indeterminateness occurs at the extreme point of bed profile when the sediment rate varies and the bed remains the same. Authors performed the closure of the Exner equation by the analytical sediment transport model, which allowed to transform the Exner equation to parabolic type equation. Analysis of the obtained equation showed that it’s numerical solving does not lead to occurring of the indeterminateness mentioned above. Parabolic form of the transformed Exner equation allows to apply the effective and stable implicit central difference scheme for this equation solving.
The model problem of bed evolution in presence of periodic distribution of the bed shear stress is carried out. The authors used the explicit central difference scheme with and without filtration method application and implicit central difference scheme for numerical solution of the problem. It is shown that the explicit central difference scheme is unstable in the area of the bed profile extremum. Using the filtration method resulted to increased dissipation of the solution. The solution obtained by using the implicit central difference scheme corresponds to the distribution law of bed shear stress and is stable throughout the calculation area.
-
Исследование индивидуально-ориентированных механизмов динамики одновидовой популяции с помощью логических детерминированных клеточных автоматов
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1279-1293Исследование логических детерминированных клеточноавтоматных моделей популяционной динамики позволяет выявлять детальные индивидуально-ориентированные механизмы функционирования экосистем. Выявление таких механизмов актуально в связи с проблемами, возникающими вследствие переэксплуатации природных ресурсов, загрязнения окружающей среды и изменения климата. Классические модели популяционной динамики имеют феноменологическую природу, так как являются «черными ящиками». Феноменологические модели принципиально затрудняют исследование локальных механизмов функционирования экосистем. Мы исследовали роль плодовитости и длительности восстановления ресурсов в механизмах популяционного роста, используя четыре модели экосистемы с одним видом. Эти модели являются логическими детерминированными клеточными автоматами и основаны на физической аксиоматике возбудимой среды с восстановлением. Было выявлено, что при увеличении времени восстановления ресурсов экосистемы происходит катастрофическая гибель популяции. Показано также, что большая плодовитость ускоряет исчезновения популяции. Исследованные механизмы важны для понимания механизмов устойчивого развития экосистем и сохранения биологического разнообразия. Обсуждаются перспективы представленного модельного подхода как метода прозрачного многоуровневого моделирования сложных систем.
Ключевые слова: популяционная динамика, клеточные автоматы, сложные системы, популяционные катастрофы, автоволны.
Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293Views (last year): 16. Citations: 3 (RSCI).Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.
-
Моделирование эволюции песчано-гравийного дна канала в одномерном приближении
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 315-328В работе предложена математическая модель для одномерного неравновесного руслового процесса. Модель учитывает движение наносов во взвешенном и влекомом состоянии. Транспорт влекомых наносов определен с помощью оригинальной формулы, аналитически полученной из уравнения движения тонкого придонного водогрунтового слоя. Данная формула не содержит новых феноменологических параметров и учитывает влияние уклона дна, физико-механических и гранулометрических параметров донного материала на процесс транспорта влекомых наносов. Для верификации предложенной модели был решен ряд классических тестовых задач. Выполнено сравнение результатов численных расчетов с известными экспериментальными данными и результатами других авторов. Показано, что, несмотря на относительную простоту предложенной математической модели, полученные численные решения хорошо согласуются с экспериментальными данными.
Modeling of sand-gravel bed evolution in one-dimension
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 315-328In the paper the model for a one-dimensional non-equilibrium riverbed process is proposed. The model takes into account the suspended and bed-load sediment transport. The bed-load transport is determined by using the original formula. This formula was derived from the thin bottom layer motion equation. The formula doesn’t contain new phenomenological parameters and takes into account the influence of bed slope, granulometric and physical mechanical parameters on the bed-load transport. A number of the model test problems are solved for the verification of the proposed mathematical model. The comparison of the calculation results with the established experimental data and the results of other authors is made. It was shown, that the obtained results have a good agreement with the experimental data in spite of the relative simplicity of the proposed mathematical model.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"