All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Transition from regular to chaotic dynamics for weakly bound rotating clusters
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 13-20Views (last year): 2.The measure of regular and chaotic component in dynamics of van-der-Waals clusters has been obtained by Monte Carlo method at different values of the total energy and the angular momentum. The nonmonotonic dependence of the volume of chaotic component on the angular momentum has been determined. The reason of transition to the chaotic regime has been revealed.
-
On the stability of the gravitational system of many bodies
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 487-511In this paper, a gravitational system is understood as a set of point bodies that interact according to Newton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of a gravitational system of general position is discussed by direct computational experiment. A gravitational system of general position is a system in which the masses, initial positions, and velocities of bodies are chosen randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large time intervals has been developed for the computational experiment. The proposed method allowed, on the one hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to use standard methods for the numerical solution of systems of differential equations of low approximation order. Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is discontinuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. The general conclusion of a series of computational experiments has shown that gravitational systems of general position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the proposed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computational experiments based on analytical methods, as well as direct numerical methods of high-order approximation (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion years or more. Due to the limitations on the available computational resources, the stability of the dynamics of the planets of the solar system within the framework of the proposed method was confirmed for a period of ten million years. With the help of a computational experiment, one of the possible scenarios for the disintegration of the solar systems is also considered.
-
A Monte-Carlo study of the inner tracking system main characteristics for multi purpose particle detector MPD
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 87-94Views (last year): 28.At present, the accelerator complex NICA is being built at JINR (Dubna). It is intended for performing experiments to study interactions of relativistic nuclei and polarized particles (protons and deuterons). One of the experimental facilitues MPD (MultiPurpose Detector) was designed to investigate nucleus-nucleus, protonnucleus and proton-proton interactions. The existing plans of future MPD upgrade consider a possibility to install an inner tracker made of the new generation silicon pixel sensors. It is expected that such a detector will considerably enhance the research capability of the experiment both for nucleus-nucleus interactions (due to a high spatial resolution near the collision region) and proton-proton ones (due to a fast detector response).
This paper presents main characteristics of such a tracker, obtained using a Monte-Carlo simulation of the detector for proton-proton collisions. In particular, the detector ability to reconstruct decay vertices of short-lived particles and perform a selection of rare events of such decays from much more frequent “common” interactions are evaluated. Also, the problem of a separation of multiple collisions during the high luminosity accelerator running and the task of detector triggering on rare events are addressed. The results obtained can be used to justify the necessity to build such a detector and to develop a high-level trigger system, possibly based on machine learning techniques.
-
Local estimations of Monte Carlo method with the object spectral representation in the solution of global illumination
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 75-84Citations: 2 (RSCI).The article deals with the local and double local estimation of the Monte Carlo method for solving the equation of global illumination. The local estimation allows calculating the illumination at any point at the approximation of diffuse reflection, whereas the double local estimation allows calculating directly the luminance at a given point in a given direction. The article presents the mathematical basis of local estimations and the basic stages of the software implementation. The representation of three-dimensional objects in the basis of spherical functions and the possibility of using them in the local estimations are also considered.
-
On the efficiency of the maximum cross section method in radiation transport theory
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582Views (last year): 4. Citations: 2 (RSCI).We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.
-
Applying artificial neural network for the selection of mixed refrigerant by boiling curve
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 593-608The paper provides a method for selecting the composition of a refrigerant with a given isobaric cooling curve using an artificial neural network (ANN). This method is based on the use of 1D layers of a convolutional neural network. To train the neural network, we applied a technological model of a simple heat exchanger in the UniSim design program, using the Peng – Robinson equation of state.We created synthetic database on isobaric boiling curves of refrigerants of different compositions using the technological model. To record the database, an algorithm was developed in the Python programming language, and information on isobaric boiling curves for 1 049 500 compositions was uploaded using the COM interface. The compositions have generated by Monte Carlo method. Designed architecture of ANN allows select composition of a mixed refrigerant by 101 points of boiling curve. ANN gives mole flows of mixed refrigerant by composition (methane, ethane, propane, nitrogen) on the output layer. For training ANN, we used method of cyclical learning rate. For results demonstration we selected MR composition by natural gas cooling curve with a minimum temperature drop of 3 К and a maximum temperature drop of no more than 10 К, which turn better than we predicted via UniSim SQP optimizer and better than predicted by $k$-nearest neighbors algorithm. A significant value of this article is the fact that an artificial neural network can be used to select the optimal composition of the refrigerant when analyzing the cooling curve of natural gas. This method can help engineers select the composition of the mixed refrigerant in real time, which will help reduce the energy consumption of natural gas liquefaction.
-
Algorithms of parallel computing for radiative-conductive heat transfer problems
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 543-552Views (last year): 2. Citations: 5 (RSCI).The problems of radiative-conductive heat transfer in the scattering layer are considered. They consist in finding the temperature profile and improving the heat transfer from boundaries. For their solution the Monte Carlo method is used. The different approaches of parallelization of proposed algorithm are analyzed.
-
On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.
In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.
-
Computational modeling of the thermal and physical processes in the high-temperature gas-cooled reactor
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 895-906The development of a high-temperature gas-cooled reactor (HTGR) constituting a part of nuclear power-and-process station and intended for large-scale hydrogen production is now in progress in the Russian Federation. One of the key objectives in development of the high-temperature gas-cooled reactor is the computational justification of the accepted design.
The article gives the procedure for the computational analysis of thermal and physical characteristics of the high-temperature gas-cooled reactor. The procedure is based on the use of the state-of-the-art codes for personal computer (PC).
The objective of thermal and physical analysis of the reactor as a whole and of the core in particular was achieved in three stages. The idea of the first stage is to justify the neutron physical characteristics of the block-type core during burn-up with the use of the MCU-HTR code based on the Monte Carlo method. The second and the third stages are intended to study the coolant flow and the temperature condition of the reactor and the core in 3D with the required degree of detailing using the FlowVision and the ANSYS codes.
For the purpose of carrying out the analytical studies the computational models of the reactor flow path and the fuel assembly column were developed.
As per the results of the computational modeling the design of the support columns and the neutron physical characteristics of the fuel assembly were optimized. This results in the reduction of the total hydraulic resistance of the reactor and decrease of the maximum temperature of the fuel elements.
The dependency of the maximum fuel temperature on the value of the power peaking factors determined by the arrangement of the absorber rods and of the compacts of burnable absorber in the fuel assembly is demonstrated.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"