All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Conditions of Rice statistical model applicability and estimation of the Rician signal’s parameters by maximum likelihood technique
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 13-25Views (last year): 2. Citations: 4 (RSCI).The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.
-
Stable character of the Rice statistical distribution: the theory and application in the tasks of the signals’ phase shift measuring
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 475-485The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.
-
Analytical solution and computer simulation of the task of Rician distribution’s parameters in limiting cases of large and small values of signal-to-noise ratio
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 227-242Views (last year): 2.The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.
-
Theoretical substantiation of the mathematical techniques for joint signal and noise estimation at rician data analysis
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 445-473Views (last year): 2. Citations: 2 (RSCI).The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.
-
Review of MRI processing techniques and elaboration of a new two-parametric method of moments
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 231-244Citations: 10 (RSCI).The paper provides a review of the existing methods of signals’ processing within the conditions of the Rice statistical model applicability. There are considered the principle development directions, the existing limitations and the improvement possibilities concerning the methods of solving the tasks of noise suppression and analyzed signals’ filtration by the example of magnetic-resonance visualization. A conception of a new approach to joint calculation of Rician signal’s both parameters has been developed based on the method of moments in two variants of its implementation. The computer simulation and the comparative analysis of the obtained numerical results have been conducted.
-
Signal and noise parameters’ determination at rician data analysis by method of moments of lower odd orders
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 717-728Views (last year): 10. Citations: 1 (RSCI).The paper develops a new mathematical method of the joint signal and noise parameters determination at the Rice statistical distribution by method of moments based upon the analysis of data for the 1-st and the 3-rd raw moments of the random rician value. The explicit equations’ system have been obtained for required parameters of the signal and noise. In the limiting case of the small value of the signal-to-noise ratio the analytical formulas have been derived that allow calculating the required parameters without the necessity of solving the equations numerically. The technique having been elaborated in the paper ensures an efficient separation of the informative and noise components of the data to be analyzed without any a-priori restrictions, just based upon the processing of the results of the signal’s sampled measurements. The task is meaningful for the purposes of the rician data processing, in particular in the systems of magnetic-resonance visualization, in ultrasound visualization systems, at the optical signals’ analysis in range measuring systems, in radio location, etc. The results of the investigation have shown that the two parameter task solution of the proposed technique does not lead to the increase in demanded volume of computing resources compared with the one parameter task being solved in approximation that the second parameter of the task is known a-priori There are provided the results of the elaborated technique’s computer simulation. The results of the signal and noise parameters’ numerical calculation have confirmed the efficiency of the elaborated technique. There has been conducted the comparison of the accuracy of the sought-for parameters estimation by the technique having been developed in this paper and by the previously elaborated method of moments based upon processing the measured data for lower even moments of the signal to be analyzed.
-
Signal and noise calculation at Rician data analysis by means of combining maximum likelihood technique and method of moments
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 511-523Views (last year): 11.The paper develops a new mathematical method of the joint signal and noise calculation at the Rice statistical distribution based on combing the maximum likelihood method and the method of moments. The calculation of the sough-for values of signal and noise is implemented by processing the sampled measurements of the analyzed Rician signal’s amplitude. The explicit equations’ system has been obtained for required signal and noise parameters and the results of its numerical solution are provided confirming the efficiency of the proposed technique. It has been shown that solving the two-parameter task by means of the proposed technique does not lead to the increase of the volume of demanded calculative resources if compared with solving the task in one-parameter approximation. An analytical solution of the task has been obtained for the particular case of small value of the signal-to-noise ratio. The paper presents the investigation of the dependence of the sought for parameters estimation accuracy and dispersion on the quantity of measurements in experimental sample. According to the results of numerical experiments, the dispersion values of the estimated sought-for signal and noise parameters calculated by means of the proposed technique change in inverse proportion to the quantity of measurements in a sample. There has been implemented a comparison of the accuracy of the soughtfor Rician parameters’ estimation by means of the proposed technique and by earlier developed version of the method of moments. The problem having been considered in the paper is meaningful for the purposes of Rician data processing, in particular, at the systems of magnetic-resonance visualization, in devices of ultrasonic visualization, at optical signals’ analysis in range-measuring systems, at radar signals’ analysis, as well as at solving many other scientific and applied tasks that are adequately described by the Rice statistical model.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"