Результаты поиска по 'Shtakelberg’s game':
Найдено статей: 2
  1. Ougolnitsky G.A., Usov A.B.
    Game-theoretic model of coordinations of interests at innovative development of corporations
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 673-684

    Dynamic game theoretic models of the corporative innovative development are investigated. The proposed models are based on concordance of private and public interests of agents. It is supposed that the structure of interests of each agent includes both private (personal interests) and public (interests of the whole company connected with its innovative development first) components. The agents allocate their personal resources between these two directions. The system dynamics is described by a difference (not differential) equation. The proposed model of innovative development is studied by simulation and the method of enumeration of the domains of feasible controls with a constant step. The main contribution of the paper consists in comparative analysis of efficiency of the methods of hierarchical control (compulsion or impulsion) for information structures of Stackelberg or Germeier (four structures) by means of the indices of system compatibility. The proposed model is a universal one and can be used for a scientifically grounded support of the programs of innovative development of any economic firm. The features of a specific company are considered in the process of model identification (a determination of the specific classes of model functions and numerical values of its parameters) which forms a separate complex problem and requires an analysis of the statistical data and expert estimations. The following assumptions about information rules of the hierarchical game are accepted: all players use open-loop strategies; the leader chooses and reports to the followers some values of administrative (compulsion) or economic (impulsion) control variables which can be only functions of time (Stackelberg games) or depend also on the followers’ controls (Germeier games); given the leader’s strategies all followers simultaneously and independently choose their strategies that gives a Nash equilibrium in the followers’ game. For a finite number of iterations the proposed algorithm of simulation modeling allows to build an approximate solution of the model or to conclude that it doesn’t exist. A reliability and efficiency of the proposed algorithm follow from the properties of the scenario method and the method of a direct ordered enumeration with a constant step. Some comprehensive conclusions about the comparative efficiency of methods of hierarchical control of innovations are received.

    Views (last year): 9. Citations: 6 (RSCI).
  2. Reshitko M.A., Ougolnitsky G.A., Usov A.B.
    Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667

    In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.

    We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"