All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Reasons for nonlinearity: globality and noncommutativity
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 355-358Views (last year): 3.A dynamic process modeled by ordinary differential equations is considered. If a nonautonomous system of ordinary differential equations has a general solution in a certain area, than the system can be simplified by nonautonomous substitution of variables: right parts turn to zeroes. Right parts of an autonomous system of ordinary differential equations in the neighborhood of nonsingular points can be linearized. A separable system where the right part contains linear combination of autonomous vector fields and factors are functions of independent variable is considered. If the fields commute than they can be linearized by general substitution of variables.
-
Transition to chaos in the «reaction–diffusion» systems. The simplest models
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12Views (last year): 6. Citations: 1 (RSCI).The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.
-
Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604Views (last year): 7. Citations: 6 (RSCI).We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.
-
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Views (last year): 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
Tool for integration of heterogeneous models and its application to loosely coupled sets of differential equations
Computer Research and Modeling, 2009, v. 1, no. 2, pp. 127-136Views (last year): 1.We develop the software tool for integration of dynamics models, which are inhomogeneous over mathematical properties and/or over requirements to the time step. The family of algorithms for the parallel computation of heterogeneous models with different time steps is offered. Analytical estimates and direct measurements of the error of these algorithms are made with reference to weakly coupled ODE sets. The advantage of the algorithms in the time cost as compared to accurate methods is shown.
-
Investigation of approximation order of invariant differential operators on movable irregular quadrangular grid
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 353-364Views (last year): 2.The a priori analysis of approximation of magnetohydrodynamic equations on irregular quadrangular analysis was performed. The values of coefficients wich determine the misalignment norm for difference analogs of operators gradient and divergence were calculated. Was studied the influence of properties of grid cells on misalignment. For the numerical confirmation of obtained estimations were cited the examples of calculations with specifying identical initial data on different grids.
-
Constructing of linearly implicit schemes which are LN-equivalent to implicit Runge–Kutta methods
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 483-496Views (last year): 2. Citations: 2 (RSCI).New family of linearly implicit schemes are presented. This family allows to obtain methods which are equivalent to stiffly accurate implicit Runge–Kutta schemes (such as RadauIIA and LobattoIIIC) on nonautonomous linear problems. Notion of LN-equivalence of schemes is introduced. Order conditions and stability conditions of such methods are obtained with the use of media for computer symbolic calculations. Some examples of new schemes have been constructed. Numerical studying of new method have been done with the use of classical tests for stiff problems.
-
Numerical integration algorithm potentially-streaming equations in lumped parameters to control the correctness of the approximate solution
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 479-493Views (last year): 4. Citations: 3 (RSCI).This work is devoted to development of an algorithm for numerical integration of differential equations potentially-streaming method simulation of non-equilibrium processes. This method was developed by the author in his earlier published works. In this paper, consideration is limited to systems with lumped parameters. Also previously developed method for analyzing the correctness of the author of the approximate solution of the system potentially-streaming equations for systems in lumped parameters. The purpose of this article is to combine this technique with modern numerical methods for integrating systems of ordinary differential equations and the development of methods of numerical integration of systems of equations potentially-streaming method that allows to guarantee the correctness of the approximate solution.
-
Calculation of particular solutions of nonhomogeneous linear equations with two linear operators, of which at least one is almost algebraic, in the case of simple roots of the characteristic equation
Computer Research and Modeling, 2016, v. 8, no. 1, pp. 9-18Views (last year): 1.The concept of an operator is an almost algebraic with respect to two-sided ideal of the algebra of linear operators in some finite-dimensional linear spaces, it extended to the case when the ideal is left. We prove a theorem on the following equation particular solution $\sum\limits^{n, m}_{i=0, j=0} a_{ij} A^i B^j u = f$, where $A$ and $B$ is a linear operator, $f$ is an element of a linear space. The result is applied to the differential-difference equations.
-
Integration the relativistic wave equations in Bianchi IX cosmology model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.
Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.
The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.
Keywords: noncommutative integration, Bianchi IX.Views (last year): 5.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"