All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Quantile shape measures for heavy-tailed distributions
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1041-1077Currently, journal papers contain numerous examples of the use of heavy-tailed distributions for applied research on various complex systems. Models of extreme data are usually limited to a small set of distribution shapes that in this field of applied research historically been used. It is possible to increase the composition of the set of probability distributions shapes through comparing the measures of the distribution shapes and choosing the most suitable implementations. The example of a beta distribution of the second kind shown that the lack of definability of the moments of heavy-tailed implementations of the beta family of distributions limits the applicability of the existing classical methods of moments for studying the distributions shapes when are characterized heavy tails. For this reason, the development of new methods for comparing distributions based on quantile shape measures free from the restrictions on the shape parameters remains relevant study the possibility of constructing a space of quantile measures of shapes for comparing distributions with heavy tails. The operation purpose consists in computer research of creation possibility of space of the quantile’s measures for the comparing of distributions property with heavy tails. On the basis of computer simulation there the distributions implementations in measures space of shapes were been shown. Mapping distributions in space only of the parametrical measures of shapes has shown that the imposition of regions for heavy tails distribution made impossible compare the shape of distributions belonging to different type in the space of quantile measures of skewness and kurtosis. It is well known that shape information measures such as entropy and entropy uncertainty interval contain additional information about the shape measure of heavy-tailed distributions. In this paper, a quantile entropy coefficient is proposed as an additional independent measure of shape, which is based on the ratio of entropy and quantile uncertainty intervals. Also estimates of quantile entropy coefficients are obtained for a number of well-known heavy-tailed distributions. The possibility of comparing the distributions shapes with realizations of the beta distribution of the second kind is illustrated by the example of the lognormal distribution and the Pareto distribution. Due to mapping the position of stable distributions in the three-dimensional space of quantile measures of shapes estimate made it possible the shape parameters to of the beta distribution of the second kind, for which shape is closest to the Lévy shape. From the paper material it follows that the display of distributions in the three-dimensional space of quantile measures of the forms of skewness, kurtosis and entropy coefficient significantly expands the possibility of comparing the forms for distributions with heavy tails.
-
A problem-modeling environment for the numerical solution of the Boltzmann equation on a cluster architecture for analyzing gas-kinetic processes in the interelectrode gap of thermal emission converters
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 219-232Views (last year): 24.This paper is devoted to the application of the method of numerical solution of the Boltzmann equation for the solution of the problem of modeling the behavior of radionuclides in the cavity of the interelectric gap of a multielement electrogenerating channel. The analysis of gas-kinetic processes of thermionic converters is important for proving the design of the power-generating channel. The paper reviews two constructive schemes of the channel: with one- and two-way withdrawal of gaseous fission products into a vacuum-cesium system. The analysis uses a two-dimensional transport equation of the second-order accuracy for the solution of the left-hand side and the projection method for solving the right-hand side — the collision integral. In the course of the work, a software package was implemented that makes it possible to calculate on the cluster architecture by using the algorithm of parallelizing the left-hand side of the equation; the paper contains the results of the analysis of the dependence of the calculation efficiency on the number of parallel nodes. The paper contains calculations of data on the distribution of pressures of gaseous fission products in the gap cavity, calculations use various sets of initial pressures and flows; the dependency of the radionuclide pressure in the collector region was determined as a function of cesium pressures at the ends of the gap. The tests in the loop channel of a nuclear reactor confirm the obtained results.
-
A new form of differential equations in modeling of the motion of a heavy solid
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884Views (last year): 6.The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.
-
Application of Turbulence Problem Solver (TPS) software complex for numerical modeling of the interaction between laser radiation and metals
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 619-630Views (last year): 15.The work is dedicated to the use of the software package Turbulence Problem Solver (TPS) for numerical simulation of a wide range of laser problems. The capabilities of the package are demonstrated by the example of numerical simulation of the interaction of femtosecond laser pulses with thin metal bonds. The software package TPS developed by the authors is intended for numerical solution of hyperbolic systems of differential equations on multiprocessor computing systems with distributed memory. The package is a modern and expandable software product. The architecture of the package gives the researcher the opportunity to model different physical processes in a uniform way, using different numerical methods and program blocks containing specific initial conditions, boundary conditions and source terms for each problem. The package provides the the opportunity to expand the functionality of the package by adding new classes of problems, computational methods, initial and boundary conditions, as well as equations of state of matter. The numerical methods implemented in the software package were tested on test problems in one-dimensional, two-dimensional and three-dimensional geometry, which included Riemann's problems on the decay of an arbitrary discontinuity with different configurations of the exact solution.
Thin films on substrates are an important class of targets for nanomodification of surfaces in plasmonics or sensor applications. Many articles are devoted to this subject. Most of them, however, focus on the dynamics of the film itself, paying little attention to the substrate, considering it simply as an object that absorbs the first compression wave and does not affect the surface structures that arise as a result of irradiation. The paper describes in detail a computational experiment on the numerical simulation of the interaction of a single ultrashort laser pulse with a gold film deposited on a thick glass substrate. The uniform rectangular grid and the first-order Godunov numerical method were used. The presented results of calculations allowed to confirm the theory of the shock-wave mechanism of holes formation in the metal under femtosecond laser action for the case of a thin gold film with a thickness of about 50 nm on a thick glass substrate.
-
Weighthed vector finite element method and its applications
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 71-86Views (last year): 37.Mathematical models of many natural processes are described by partial differential equations with singular solutions. Classical numerical methods for determination of approximate solution to such problems are inefficient. In the present paper a boundary value problem for vector wave equation in L-shaped domain is considered. The presence of reentrant corner of size $3\pi/2$ on the boundary of computational domain leads to the strong singularity of the solution, i.e. it does not belong to the Sobolev space $H^1$ so classical and special numerical methods have a convergence rate less than $O(h)$. Therefore in the present paper a special weighted set of vector-functions is introduced. In this set the solution of considered boundary value problem is defined as $R_ν$-generalized one.
For numerical determination of the $R_ν$-generalized solution a weighted vector finite element method is constructed. The basic difference of this method is that the basis functions contain as a factor a special weight function in a degree depending on the properties of the solution of initial problem. This allows to significantly raise a convergence speed of approximate solution to the exact one when the mesh is refined. Moreover, introduced basis functions are solenoidal, therefore the solenoidal condition for the solution is taken into account precisely, so the spurious numerical solutions are prevented.
Results of numerical experiments are presented for series of different type model problems: some of them have a solution containing only singular component and some of them have a solution containing a singular and regular components. Results of numerical experiment showed that when a finite element mesh is refined a convergence rate of the constructed weighted vector finite element method is $O(h)$, that is more than one and a half times better in comparison with special methods developed for described problem, namely singular complement method and regularization method. Another features of constructed method are algorithmic simplicity and naturalness of the solution determination that is beneficial for numerical computations.
-
Method for processing acoustic emission testing data to define signal velocity and location
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1029-1040Non-destructive acoustic emission testing is an effective and cost-efficient way to examine pressure vessels for hidden defects (cracks, laminations etc.), as well as the only method that is sensitive to developing defects. The sound velocity in the test object and its adequate definition in the location scheme are of paramount importance for the accurate detection of the acoustic emission source. The acoustic emission data processing method proposed herein comprises a set of numerical methods and allows defining the source coordinates and the most probable velocity for each signal. The method includes pre-filtering of data by amplitude, by time differences, elimination of electromagnetic interference. Further, a set of numerical methods is applied to them to solve the system of nonlinear equations, in particular, the Newton – Kantorovich method and the general iterative process. The velocity of a signal from one source is assumed as a constant in all directions. As the initial approximation is taken the center of gravity of the triangle formed by the first three sensors that registered the signal. The method developed has an important practical application, and the paper provides an example of its approbation in the calibration of an acoustic emission system at a production facility (hydrocarbon gas purification absorber). Criteria for prefiltering of data are described. The obtained locations are in good agreement with the signal generation sources, and the velocities even reflect the Rayleigh-Lamb division of acoustic waves due to the different signal source distances from the sensors. The article contains the dependency graph of the average signal velocity against the distance from its source to the nearest sensor. The main advantage of the method developed is its ability to detect the location of different velocity signals within a single test. This allows to increase the degree of freedom in the calculations, and thereby increase their accuracy.
-
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 2. Numerical examples
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 885-910Views (last year): 13.WENO schemes (weighted, essentially non oscillating) are currently having a wide range of applications as approximate high order schemes for discontinuous solutions of partial differential equations. These schemes are used for direct numerical simulation (DNS) and large eddy simmulation in the gas dynamic problems, problems for DNS in MHD and even neutron kinetics. This work is dedicated to clarify some characteristics of WENO schemes and numerical simulation of specific tasks. Results of the simulations can be used to clarify the field of application of these schemes. The first part of the work contained proofs of the approximation properties, stability and convergence of WENO5, WENO7, WENO9, WENO11 and WENO13 schemes. In the second part of the work the modified wave number analysis is conducted that allows to conclude the dispersion and dissipative properties of schemes. Further, a numerical simulation of a number of specific problems for hyperbolic equations is conducted, namely for advection equations (one-dimensional and two-dimensional), Hopf equation, Burgers equation (with low dissipation) and equations of non viscous gas dynamics (onedimensional and two-dimensional). For each problem that is implying a smooth solution, the practical calculation of the order of approximation via Runge method is performed. The influence of a time step on nonlinear properties of the schemes is analyzed experimentally in all problems and cross checked with the first part of the paper. In particular, the advection equations of a discontinuous function and Hopf equations show that the failure of the recommendations from the first part of the paper leads first to an increase in total variation of the solution and then the approximation is decreased by the non-linear dissipative mechanics of the schemes. Dissipation of randomly distributed initial conditions in a periodic domain for one-dimensional Burgers equation is conducted and a comparison with the spectral method is performed. It is concluded that the WENO7–WENO13 schemes are suitable for direct numerical simulation of turbulence. At the end we demonstrate the possibility of the schemes to be used in solution of initial-boundary value problems for equations of non viscous gas dynamics: Rayleigh–Taylor instability and the reflection of the shock wave from a wedge with the formation a complex configuration of shock waves and discontinuities.
-
Numerical investigation of the gas-condensate mixture flow in a porous medium
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 209-219Views (last year): 18. Citations: 2 (RSCI).In the last decades, the development of methods for increasing the efficiency of hydrocarbon extraction in fields with unconventional reserves containing large amounts of gas condensate is of great importance. This makes important the development of methods of mathematical modeling that realistically describe physical processes in a gas-condensate mixture in a porous medium.
In the paper, a mathematical model which describes the dynamics of the pressure, velocity and concentration of the components of a two-component two-phase mixture entering a laboratory model of plast filled with a porous substance with known physicochemical properties is considered. The mathematical model is based on a system of nonlinear spatially one-dimensional partial differential equations with the corresponding initial and boundary conditions. Laboratory experiments show that during a finite time the system stabilizes, what gives a basis to proceed to the stationary formulation of the problem.
The numerical solution of the formulated system of ordinary differential equations is realized in the Maple environment on the basis of the Runge–Kutta procedure. It is shown that the physical parameters of the gascondensate mixture, which characterize the modeled system in the stabilization regime, obtained on this basis, are in good agreement with the available experimental data. This confirms the correctness of the chosen approach and the validity of its further application and development for computer modeling of physical processes in gas-condensate mixtures in a porous medium. The paper presents a mathematical formulation of the system of partial differential equations and of respective system stationary equations, describes the numerical approach, and discusses the numerical results obtained in comparison with experimental data.
-
Molecular dynamics study of the mechanical properties of a platinum crystal reinforced with carbon nanotube under uniaxial tension
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1069-1080This article discusses the mechanical properties of carbon nanotube (CNT)-reinforced platinum under uniaxial tensile loading using the molecular dynamics method. A review of current computational and experimental studies on the use of carbon nanotube-reinforced composites from a structural point of view. However, quantitative and qualitative studies of CNTs to improve the properties of composites are still rare. Composite selection is a promising application for platinum alloys in many cases where they may be subjected to mechanical stress, including in biocompatibility sources. Pt-reinforced with CNTs may have additional possibilities for implantation of the implant and at the same time obtain the required mechanical characteristics.
The structure of the composite is composed of a Pt crystal with a face-centered cubic lattice with a constant of 3.92 Å and a carbon nanotube. The Pt matrix has the shape of a cube with dimensions of $43.1541 Å \times 43.1541 Å \times 43.1541 Å$. The hole size in the average platinum dimension is the radius of the carbon nanotube of the «zigzag» type (8,0), which is 2.6 Å. A carbon nanotube is placed in a hole with a radius of 4.2 Å. At such parameters, the maximum energy level was mutually observed. The model under consideration is contained in 320 atomic bombs and 5181 atomic platinum. The volume fraction of deaths in the Pt-C composite is 5.8%. At the first stage of the study, the strain rate was analyzed for stress-strain and energy change during uniaxial action on the Pt-C composite.
Analysis of the strain rate study showed that the consumption yield strength increases with high strain rate, and the elasticity has increased density with decreasing strain rate. This work also increased by 40% for Pt-C, the elasticity of the composite decreased by 42.3%. In general, fracture processes are considered in detail, including plastic deformation on an atomistic scale.
-
Application of computational simulation techniques for designing swim-out release systems
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 597-606The article describes the basic approaches of the calculation procedure of payload swim-out (objects of different function with own propulsor) from the underwater carrier a method of a self-exit using modern CFD technologies. It contains the description of swim-out by a self-exit method, its advantages and disadvantages. Also it contains results of research of convergence on a grid of a final-volume model with accuracy-time criterion, and results of comparison of calculation with experiment (validation of models). Validation of models was carried out using the available data of experimental definition of traction characteristics of water-jet propulsor of the natural sample in the development pool. Calculations of traction characteristics of water-jet propulsor were carried out via software package FlowVision ver. 3.10. On the basis of comparison of results of calculations for conditions of carrying out of experiments the error of water-jet propulsor calculated model which has made no more than 5% in a range of advance coefficient water-jet propulsor, realised in the process of swim-out by a selfexit method has been defined. The received value of an error of calculation of traction characteristics is used for definition of limiting settlement values of speed of branch of object from the carrier (the minimum and maximum values). The considered problem is significant from the scientific point of view thanks to features of the approach to modelling hydrojet moving system together with movement of separated object, and also from the practical point of view, thanks to possibility of reception with high degree of reliability of parametres swim-out of objects from sea bed vehicles a method of the self-exit which working conditions are assumed by movement in the closed volumes, already on a design stage.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"