All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Continuum deployable shells made of thin plates
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 3-29Citations: 3 (RSCI).This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the sizes of the six loop faces. When thin plates were used, the continuum approximation of the deployed net could be interpreted as a shell with a wide variety of local curvatures. Kinematics of the continuum model is analyzed by the method of Cartan moving hedron. Mechanical behavior of continuum nets is studied when cylindrical hinges between the plates are completed of shape memory plastic materials. The paper researches into shell transformations from one stable form to the other. Various practical applications of the continuum nets are demonstrated.
-
A problem-modeling environment for the numerical solution of the Boltzmann equation on a cluster architecture for analyzing gas-kinetic processes in the interelectrode gap of thermal emission converters
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 219-232Views (last year): 24.This paper is devoted to the application of the method of numerical solution of the Boltzmann equation for the solution of the problem of modeling the behavior of radionuclides in the cavity of the interelectric gap of a multielement electrogenerating channel. The analysis of gas-kinetic processes of thermionic converters is important for proving the design of the power-generating channel. The paper reviews two constructive schemes of the channel: with one- and two-way withdrawal of gaseous fission products into a vacuum-cesium system. The analysis uses a two-dimensional transport equation of the second-order accuracy for the solution of the left-hand side and the projection method for solving the right-hand side — the collision integral. In the course of the work, a software package was implemented that makes it possible to calculate on the cluster architecture by using the algorithm of parallelizing the left-hand side of the equation; the paper contains the results of the analysis of the dependence of the calculation efficiency on the number of parallel nodes. The paper contains calculations of data on the distribution of pressures of gaseous fission products in the gap cavity, calculations use various sets of initial pressures and flows; the dependency of the radionuclide pressure in the collector region was determined as a function of cesium pressures at the ends of the gap. The tests in the loop channel of a nuclear reactor confirm the obtained results.
-
Simulation of multi-temperature flows turbulent mixing in a T-junctions by the LES approach in FlowVision software package
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 827-843The paper presents the results of numerical simulation of different-temperature water flows turbulent mixing in a T-junctions in the FlowVision software package. The article describes in detail an experimental stand specially designed to obtain boundary conditions that are simple for most computational fluid dynamics software systems. Values of timeaveraged temperatures and velocities in the control sensors and planes were obtained according to the test results. The article presents the system of partial differential equations used in the calculation describing the process of heat and mass transfer in a liquid using the Smagorinsky turbulence model. Boundary conditions are specified that allow setting the random velocity pulsations at the entrance to the computational domain. Distributions of time-averaged water velocity and temperature in control sections and sensors are obtained. The simulation is performed on various computational grids, for which the axes of the global coordinate system coincide with the directions of hot and cold water flows. The possibility for FlowVision PC to construct a computational grid in the simulation process based on changes in flow parameters is shown. The influence of such an algorithm for constructing a computational grid on the results of calculations is estimated. The results of calculations on a diagonal grid using a beveled scheme are given (the direction of the coordinate lines does not coincide with the direction of the tee pipes). The high efficiency of the beveled scheme is shown when modeling flows whose general direction does not coincide with the faces of the calculated cells. A comparison of simulation results on various computational grids is carried out. The numerical results obtained in the FlowVision PC are compared with experimental data and calculations performed using other computing programs. The results of modeling turbulent mixing of water flow of different temperatures in the FlowVision PC are closer to experimental data in comparison with calculations in CFX ANSYS. It is shown that the application of the LES turbulence model on relatively small computational grids in the FlowVision PC allows obtaining results with an error within 5%.
-
Application of Turbulence Problem Solver (TPS) software complex for numerical modeling of the interaction between laser radiation and metals
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 619-630Views (last year): 15.The work is dedicated to the use of the software package Turbulence Problem Solver (TPS) for numerical simulation of a wide range of laser problems. The capabilities of the package are demonstrated by the example of numerical simulation of the interaction of femtosecond laser pulses with thin metal bonds. The software package TPS developed by the authors is intended for numerical solution of hyperbolic systems of differential equations on multiprocessor computing systems with distributed memory. The package is a modern and expandable software product. The architecture of the package gives the researcher the opportunity to model different physical processes in a uniform way, using different numerical methods and program blocks containing specific initial conditions, boundary conditions and source terms for each problem. The package provides the the opportunity to expand the functionality of the package by adding new classes of problems, computational methods, initial and boundary conditions, as well as equations of state of matter. The numerical methods implemented in the software package were tested on test problems in one-dimensional, two-dimensional and three-dimensional geometry, which included Riemann's problems on the decay of an arbitrary discontinuity with different configurations of the exact solution.
Thin films on substrates are an important class of targets for nanomodification of surfaces in plasmonics or sensor applications. Many articles are devoted to this subject. Most of them, however, focus on the dynamics of the film itself, paying little attention to the substrate, considering it simply as an object that absorbs the first compression wave and does not affect the surface structures that arise as a result of irradiation. The paper describes in detail a computational experiment on the numerical simulation of the interaction of a single ultrashort laser pulse with a gold film deposited on a thick glass substrate. The uniform rectangular grid and the first-order Godunov numerical method were used. The presented results of calculations allowed to confirm the theory of the shock-wave mechanism of holes formation in the metal under femtosecond laser action for the case of a thin gold film with a thickness of about 50 nm on a thick glass substrate.
-
Latticed deployable shells made of strips assembled from trapezoid plates
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 63-73Views (last year): 1. Citations: 3 (RSCI).This paper covers deployable systems assembled from a set of trapezium plates. The middles lines of the plates represent a plane curve in the original position of the package. It is proved that when the package of thin plates is unwrapped, a surface approximating a shell of nearly any curvature is formed. Kinematics of the continual model is analyzed by the method of Cartan moving hedron, extending the results the authors published earlier. Various applications of rotating shells are shown. Experimental models of deployable latticed systems are demonstrated.
-
The use of GIS INTEGRO in searching tasks for oil and gas deposits
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 439-444Views (last year): 4.GIS INTEGRO is the geo-information software system forming the basis for the integrated interpretation of geophysical data in researching a deep structure of Earth. GIS INTEGRO combines a variety of computational and analytical applications for the solution of geological and geophysical problems. It includes various interfaces that allow you to change the form of representation of data (raster, vector, regular and irregular network of observations), the conversion unit of map projections, application blocks, including block integrated data analysis and decision prognostic and diagnostic tasks.
The methodological approach is based on integration and integrated analysis of geophysical data on regional profiles, geophysical potential fields and additional geological information on the study area. Analytical support includes packages transformations, filtering, statistical processing, calculation, finding of lineaments, solving direct and inverse tasks, integration of geographic information.
Technology and software and analytical support was tested in solving problems tectonic zoning in scale 1:200000, 1:1000000 in Yakutia, Kazakhstan, Rostov region, studying the deep structure of regional profiles 1:S, 1-SC, 2-SAT, 3-SAT and 2-DV, oil and gas forecast in the regions of Eastern Siberia, Brazil.
The article describes two possible approaches of parallel calculations for data processing 2D or 3D nets in the field of geophysical research. As an example presented realization in the environment of GRID of the application software ZondGeoStat (statistical sensing), which create 3D net model on the basis of data 2d net. The experience has demonstrated the high efficiency of the use of environment of GRID during realization of calculations in field of geophysical researches.
-
Modeling thermal feedback effect on thermal processes in electronic systems
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 483-494Views (last year): 22. Citations: 3 (RSCI).The article is devoted to the effect of thermal feedback, which occurs during the operation of integrated circuits and electronic systems with their use. Thermal feedback is due to the fact that the power consumed by the functioning of the microchip heats it and, due to the significant dependence of its electrical parameters on temperature, interactive interaction arises between its electrical and thermal processes. The effect of thermal feedback leads to a change in both electrical parameters and temperature levels in microcircuits. Positive thermal feedback is an undesirable phenomenon, because it causes the output of the electrical parameters of the microcircuits beyond the permissible values, the reduction in reliability and, in some cases, burn out. Negative thermal feedback is manifested in stabilizing the electrical and thermal regimes at lower temperature levels. Therefore, when designing microcircuits and electronic systems with their application, it is necessary to achieve the implementation of negative feedback. In this paper, we propose a method for modeling of thermal modes in electronic systems, taking into account the effect of thermal feedback. The method is based on introducing into the thermal model of the electronic system new model circuit elements that are nonlinearly dependent on temperature, the number of which is equal to the number of microcircuits in the electronic system. This approach makes it possible to apply matrix-topological equations of thermal processes to the thermal model with new circuit elements introduced into it and incorporate them into existing thermal design software packages. An example of modeling a thermal process in a real electronic system is presented, taking into account the effect of thermal feedback on the example of a microcircuit installed on a printed circuit board. It is shown that in order to adequately model the electrical and thermal processes of microcircuits and electronic systems, it is necessary to take into account the effects of thermal feedback in order to avoid design errors and create competitive electronic systems.
-
Application of computational simulation techniques for designing swim-out release systems
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 597-606The article describes the basic approaches of the calculation procedure of payload swim-out (objects of different function with own propulsor) from the underwater carrier a method of a self-exit using modern CFD technologies. It contains the description of swim-out by a self-exit method, its advantages and disadvantages. Also it contains results of research of convergence on a grid of a final-volume model with accuracy-time criterion, and results of comparison of calculation with experiment (validation of models). Validation of models was carried out using the available data of experimental definition of traction characteristics of water-jet propulsor of the natural sample in the development pool. Calculations of traction characteristics of water-jet propulsor were carried out via software package FlowVision ver. 3.10. On the basis of comparison of results of calculations for conditions of carrying out of experiments the error of water-jet propulsor calculated model which has made no more than 5% in a range of advance coefficient water-jet propulsor, realised in the process of swim-out by a selfexit method has been defined. The received value of an error of calculation of traction characteristics is used for definition of limiting settlement values of speed of branch of object from the carrier (the minimum and maximum values). The considered problem is significant from the scientific point of view thanks to features of the approach to modelling hydrojet moving system together with movement of separated object, and also from the practical point of view, thanks to possibility of reception with high degree of reliability of parametres swim-out of objects from sea bed vehicles a method of the self-exit which working conditions are assumed by movement in the closed volumes, already on a design stage.
-
An experience of the application software packages adaptation for running in grid environments
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 339-344Views (last year): 1. Citations: 1 (RSCI).This article describes an experience of LIT JINR team in application software packages adaptation for running in different grid environments. Peculiarities of the applications “gridification” depending on their possible launch modes and a type of the matching computational resources are given. The particular applications and grid environments which applications are adopted for are listed.
-
Calculation of amplitude-frequency characteristics of ultrasonic transducers of longitudinal and longitudinal-torsional oscillations using Abaqus package
Computer Research and Modeling, 2014, v. 6, no. 6, pp. 955-966Views (last year): 38.In this study the calculation of 1/2-wave transducer of longitudinal ultrasonic oscillations and one wave transducer of longitudinal-torsion ultrasonic oscillations were carried out by finite element method with use of Abaqus. Dimensions of the concentrator of longitudinal-torsional oscillations and frequency-amplitude characteristics of the transducers of longitudinal and longitudinal-torsional oscillations were defined by calculation. Application of ultrasonic longitudinal-torsional oscillations at tool during surface-strengthening treatment of details made of titanium will allow to reduce adhesion portion of friction in the contact zone. A comparison of results of finite-element calculation of frequency-amplitude characteristics with experimental ones were made and calculation error does not exceed 2.5 %.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"