Результаты поиска по 'approximation':
Найдено статей: 200
  1. Segmentation of medical image is one of the most challenging tasks in analysis of medical image. It classifies the organs pixels or lesions from medical images background like MRI or CT scans, that is to provide critical information about the human organ’s volumes and shapes. In scientific imaging field, medical imaging is considered one of the most important topics due to the rapid and continuing progress in computerized medical image visualization, advances in analysis approaches and computer-aided diagnosis. Digital image processing becomes more important in healthcare field due to the growing use of direct digital imaging systems for medical diagnostics. Due to medical imaging techniques, approaches of image processing are now applicable in medicine. Generally, various transformations will be needed to extract image data. Also, a digital image can be considered an approximation of a real situation includes some uncertainty derived from the constraints on the process of vision. Since information on the level of uncertainty will influence an expert’s attitude. To address this challenge, we propose novel framework involving interval concept that consider a good tool for dealing with the uncertainty, In the proposed approach, the medical images are transformed into interval valued representation approach and entropies are defined for an image object and background. Then we determine a threshold for lower-bound image and for upper-bound image, and then calculate the mean value for the final output results. To demonstrate the effectiveness of the proposed framework, we evaluate it by using synthetic image and its ground truth. Experimental results showed how performance of the segmentation-based entropy threshold can be enhanced using proposed approach to overcome ambiguity.

  2. Krivovichev G.V.
    Difference splitting schemes for the system of one-dimensional equations of hemodynamics
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488

    The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.

    For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.

  3. Zenkov A.V.
    A novel method of stylometry based on the statistic of numerals
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 837-850

    A new method of statistical analysis of texts is suggested. The frequency distribution of the first significant digits in numerals of English-language texts is considered. We have taken into account cardinal as well as ordinal numerals expressed both in figures, and verbally. To identify the author’s use of numerals, we previously deleted from the text all idiomatic expressions and set phrases accidentally containing numerals, as well as itemizations and page numbers, etc. Benford’s law is found to hold approximately for the frequencies of various first significant digits of compound literary texts by different authors; a marked predominance of the digit 1 is observed. In coherent authorial texts, characteristic deviations from Benford’s law arise which are statistically stable significant author peculiarities that allow, under certain conditions, to consider the problem of authorship and distinguish between texts by different authors. The text should be large enough (at least about 200 kB). At the end of $\{1, 2, \ldots, 9\}$ digits row, the frequency distribution is subject to strong fluctuations and thus unrepresentative for our purpose. The aim of the theoretical explanation of the observed empirical regularity is not intended, which, however, does not preclude the applicability of the proposed methodology for text attribution. The approach suggested and the conclusions are backed by the examples of the computer analysis of works by W.M. Thackeray, M. Twain, R. L. Stevenson, J. Joyce, sisters Bront¨e, and J.Austen. On the basis of technique suggested, we examined the authorship of a text earlier ascribed to L. F. Baum (the result agrees with that obtained by different means). We have shown that the authorship of Harper Lee’s “To Kill a Mockingbird” pertains to her, whereas the primary draft, “Go Set a Watchman”, seems to have been written in collaboration with Truman Capote. All results are confirmed on the basis of parametric Pearson’s chi-squared test as well as non-parametric Mann –Whitney U test and Kruskal –Wallis test.

    Views (last year): 10.
  4. Pletnev N.V., Dvurechensky P.E., Gasnikov A.V.
    Application of gradient optimization methods to solve the Cauchy problem for the Helmholtz equation
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 417-444

    The article is devoted to studying the application of convex optimization methods to solve the Cauchy problem for the Helmholtz equation, which is ill-posed since the equation belongs to the elliptic type. The Cauchy problem is formulated as an inverse problem and is reduced to a convex optimization problem in a Hilbert space. The functional to be optimized and its gradient are calculated using the solution of boundary value problems, which, in turn, are well-posed and can be approximately solved by standard numerical methods, such as finite-difference schemes and Fourier series expansions. The convergence of the applied fast gradient method and the quality of the solution obtained in this way are experimentally investigated. The experiment shows that the accelerated gradient method — the Similar Triangle Method — converges faster than the non-accelerated method. Theorems on the computational complexity of the resulting algorithms are formulated and proved. It is found that Fourier’s series expansions are better than finite-difference schemes in terms of the speed of calculations and improve the quality of the solution obtained. An attempt was made to use restarts of the Similar Triangle Method after halving the residual of the functional. In this case, the convergence does not improve, which confirms the absence of strong convexity. The experiments show that the inaccuracy of the calculations is more adequately described by the additive concept of the noise in the first-order oracle. This factor limits the achievable quality of the solution, but the error does not accumulate. According to the results obtained, the use of accelerated gradient optimization methods can be the way to solve inverse problems effectively.

  5. Salikhova T.Y., Pushin D.M., Guria G.T.
    Investigation of shear-induced platelet activation in arteriovenous fistulas for haemodialysis
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 703-721

    Numerical modeling of shear-induced platelet activation in haemodialysis arteriovenous fistulas was carried out in this work. The goal was to investigate the mechanisms of threshold shear-induced platelet activation in fistulas. For shear-induced platelet activation to take place, shear stress accumulated by platelets along corresponding trajectories in blood flow had to exceed a definite threshold value. The threshold value of cumulative shear stress was supposed to depend on the multimer size of von Willebrand factor macromolecules acting as hydrodynamic sensors for platelets. The effect of arteriovenous fistulas parameters, such as the anastomotic angle, blood flow rate, and the multimer size of von Willebrand factor macromolecules, on platelet activation risk was studied. Parametric diagrams have been constructed that make it possible to distinguish the areas of parameters corresponding to the presence or absence of shear-induced platelet activation. Scaling relations that approximate critical curves on parametric diagrams were obtained. Analysis showed that threshold fistula flow rate is higher for obtuse anastomotic angle than for sharp ones. This means that a fistula with obtuse angle can be used in wider flow rate range without risk of platelet activation. In addition, a study of different anastomosis configurations of arteriovenous fistulas showed that the configuration “end of vein to end of artery” is among the safest. For all the investigated anastomosis configurations, the critical curves on the parametric diagrams were monotonically decreasing functions of von Willebrand factor multimer size. It was shown that fistula flow rate should have a significant impact on the probability of thrombus formation initiation, while the direction of flow through the distal artery did not affect platelet activation. The obtained results allowed to determine the safest fistula configurations with respect to thrombus formation triggering. The authors believe that the results of the work may be of interest to doctors performing surgical operations for creation of arteriovenous fistulas for haemodialysis. In the final section of the work, possible clinical applications of the obtained results by means of mathematical modeling are discussed.

  6. Kazaryan A.M., Shapoval A.B.
    Timeclusterring of stock indicies’ big fall
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 631-638

    The paper estimates the recurrence rate of stock indicies S&P100, CAC40, DAX, FTSE, AMEX, ATX, NASDAQ, BEL20. The introduced qunatitative measure of the recurrence rate underlies type I and type II errors. We show that more than three quarters of the indicies’ falls occur on average during the first quarter of the time between them. This result expands from sufficiently large falls, which are observed on average two times a year, over smaller falls, which occur approximately once 1.5–2 months.

    Views (last year): 2.
  7. Zenkov A.V.
    Deviation from Benford’s law and identification of author peculiarities in texts
    Computer Research and Modeling, 2015, v. 7, no. 1, pp. 197-201

    The distribution of the first significant digit in numerals of connected texts is considered. Benford's law is found to hold approximately for them. Deviations from Benford's law are statistically significant author peculiarities that allow, under certain conditions, to distinguish between parts of the text with a different authorship.

    Views (last year): 4. Citations: 6 (RSCI).
  8. Mitin N.A., Orlov Y.N.
    Statistical analysis of bigrams of specialized texts
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 243-254

    The method of the stochastic matrix spectrum analysis is used to build an indicator that allows to determine the subject of scientific texts without keywords usage. This matrix is a matrix of conditional probabilities of bigrams, built on the statistics of the alphabet characters in the text without spaces, numbers and punctuation marks. Scientific texts are classified according to the mutual arrangement of invariant subspaces of the matrix of conditional probabilities of pairs of letter combinations. The separation indicator is the value of the cosine of the angle between the right and left eigenvectors corresponding to the maximum and minimum eigenvalues. The computational algorithm uses a special representation of the dichotomy parameter, which is the integral of the square norm of the resolvent of the stochastic matrix of bigrams along the circumference of a given radius in the complex plane. The tendency of the integral to infinity testifies to the approximation of the integration circuit to the eigenvalue of the matrix. The paper presents the typical distribution of the indicator of identification of specialties. For statistical analysis were analyzed dissertations on the main 19 specialties without taking into account the classification within the specialty, 20 texts for the specialty. It was found that the empirical distributions of the cosine of the angle for the mathematical and Humanities specialties do not have a common domain, so they can be formally divided by the value of this indicator without errors. Although the body of texts was not particularly large, nevertheless, in the case of arbitrary selection of dissertations, the identification error at the level of 2 % seems to be a very good result compared to the methods based on semantic analysis. It was also found that it is possible to make a text pattern for each of the specialties in the form of a reference matrix of bigrams, in the vicinity of which in the norm of summable functions it is possible to accurately identify the theme of the written scientific work, without using keywords. The proposed method can be used as a comparative indicator of greater or lesser severity of the scientific text or as an indicator of compliance of the text to a certain scientific level.

  9. Lobanov A.I., Mirov F.Kh.
    On the using the differential schemes to transport equation with drain in grid modeling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1149-1164

    Modern power transportation systems are the complex engineering systems. Such systems include both point facilities (power producers, consumers, transformer substations, etc.) and the distributed elements (f.e. power lines). Such structures are presented in the form of the graphs with different types of nodes under creating the mathematical models. It is necessary to solve the system of partial differential equations of the hyperbolic type to study the dynamic effects in such systems.

    An approach similar to one already applied in modeling similar problems earlier used in the work. New variant of the splitting method was used proposed by the authors. Unlike most known works, the splitting is not carried out according to physical processes (energy transport without dissipation, separately dissipative processes). We used splitting to the transport equations with the drain and the exchange between Reimann’s invariants. This splitting makes possible to construct the hybrid schemes for Riemann invariants with a high order of approximation and minimal dissipation error. An example of constructing such a hybrid differential scheme is described for a single-phase power line. The difference scheme proposed is based on the analysis of the properties of the schemes in the space of insufficient coefficients.

    Examples of the model problem numerical solutions using the proposed splitting and the difference scheme are given. The results of the numerical calculations shows that the difference scheme allows to reproduce the arising regions of large gradients. It is shown that the difference schemes also allow detecting resonances in such the systems.

  10. Vasyukov A.V., Beklemysheva K.A., Onuchin E.S., Tovarnova N.A., Petrov I.B.
    Calculation of transverse wave speed in preloaded fibres under an impact
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 887-897

    The paper considers the problem of transverse impact on a thin preloaded fiber. The commonly accepted theory of transverse impact on a thin fiber is based on the classical works of Rakhmatulin and Smith. The simple relations obtained from the Rakhmatulin – Smith theory are widely used in engineering practice. However, there are numerous evidences that experimental results may differ significantly from estimations based on these relations. A brief overview of the factors that cause the differences is given in this article.

    This paper focuses on the shear wave velocity, as it is the only feature that can be directly observed and measured using high-speed cameras or similar methods. The influence of the fiber preload on the wave speed is considered. This factor is important, since it inevitably arises in the experimental results. The reliable fastening and precise positioning of the fiber during the experiments requires its preload. This work shows that the preload significantly affects the shear wave velocity in the impacted fiber.

    Numerical calculations were performed for Kevlar 29 and Spectra 1000 yarns. Shear wave velocities are obtained for different levels of initial tension. A direct comparison of numerical results and analytical estimations with experimental data is presented. The speed of the transverse wave in free and preloaded fibers differed by a factor of two for the setup parameters considered. This fact demonstrates that measurements based on high-speed imaging and analysis of the observed shear waves should take into account the preload of the fibers.

    This paper proposes a formula for a quick estimation of the shear wave velocity in preloaded fibers. The formula is obtained from the basic relations of the Rakhmatulin – Smith theory under the assumption of a large initial deformation of the fiber. The formula can give significantly better results than the classical approximation, this fact is demonstrated using the data for preloaded Kevlar 29 and Spectra 1000. The paper also shows that direct numerical calculation has better corresponding with the experimental data than any of the considered analytical estimations.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"